

ON Semiconductor®

FDS8958A-F085

Dual N & P-Channel PowerTrench® MOSFET

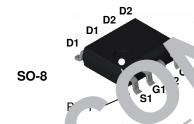
General Description

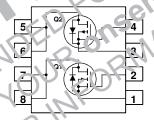
These dual N- and P-Channel enhancement mode power field effect transistors are produced using ON Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state ressitance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features

Q1: N-Channel


7.0A, 30V
$$R_{DS(on)} = 0.028\Omega$$
 @ $V_{GS} = 10V$ $R_{DS(on)} = 0.040\Omega$ @ $V_{GS} = 4.5V$


Q2: P-Channel

5A, -30V
$$R_{DS(on)} = 0.0^{\text{F}} \Omega \text{ (c. '3S = -1 '}$$

- $R_{DS(on)} = 0.080 \Omega \text{ (@. V = ...)}$

- Fast switching sk d
- High pow and ha. "ing a wider, used refact mount, skage
- Qualifie o AL Q¹

liant

Absolute Max num latings

= 25°C unless otherwise noted

Symbol	Parameter	Q1	Q2	Units
Vacs	Prain Jurce Voluge	30	30	V
V _{GS}	Gale-Source Voltage	±20	±20	V
I _D	Drain Current - Continuous (Note 1a)	7	-5	
	- Pu'sed	20	-20	Α
11	Power Dissipation for Dual Operation	2	2	
(N)	Power Dissipation for Single Operation (Note 1a)	1.6	1.6	W
	(Note 1c)	0.9	0.9	
Eks	Single Pu'se r valanche Energy (Note 3)	54	13	mJ
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +	- 150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
R _{eJC}	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDS8958A	FDS8958A-F085	13"	12mm	2500 units

Symbol	Parameter	Test	Conditions	Туре	Min	Тур	Max	Unit
Off Cha	racteristics							
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V},$ $V_{GS} = 0 \text{ V},$	I _D = 250 μA I _D = -250 μA	Q1 Q2	30 -30			V
∆BV _{DSS}	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$,	Referenced to 25°C	Q1 Q2		25 -23		mV/°(
ΔT _J I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V},$ $V_{DS} = -24 \text{ V},$	Referenced to 25°C $V_{GS} = 0 V$ $V_{GS} = 0 V$	Q1 Q2			1 -1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = -24 V$, $V_{GS} = 20 V$,	$V_{DS} = 0 \text{ V}$ $V_{DS} = 0 \text{ V}$	All			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	V _{GS} = -20 V,	V _{DS} = 0 V	All			-100	nA
On Cha	racteristics (Note 2)	· · · · · · · · · · · · · · · · · · ·						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS},$ $V_{DS} = V_{GS},$	I _D = 250 μA I _D = -250 μA	Q1 Q2	1 -1	1.º 1.7	3 -3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{,J}}$	Gate Threshold Voltage Temperature Coefficient	$I_D=250\;\mu A,\;\; F$	Referenced to 25°C	Q1 Q2		-4.5		V/°C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V},$	$I_D = 7 \text{ A}$ $I_D = 7 \text{ A}, T_J = 125^{\circ}\text{C}$	Q1		19 27	20 42 / ₄ 0	mΩ
		$V_{GS} = -10 \text{ V},$ $V_{GS} = -10 \text{ V}, \text{ I}$ $V_{GS} = -4.5 \text{ V},$	I _D = 4 A	3.		42 57 05	52 78 80	
$I_{D(on)}$	On-State Drain Current	$V_{GS} = 10 \text{ V},$ $V_{GS} = -10 \text{ V},$	V _{DS} = V	Q1 Q2	20 -20			A
G FS	Forward Transconductance	$V_{DS} = 5 V$, $V_{DS} = - V$,	'p = 7 A =-5 A	Q1 Q2		10		3
Dynami	c Characteristics				O		VL.	-
C _{iss}	Input Capacitance	Q. '5 V, v.	s = 0 V, 1 - 1.0 MHz	Q1 Q2		575 5.28		pF
C _{oss}	Output Capacitance		"VID".	Q1	P	145 132		pF
C _{rss}	Reverse Tr Sie. Capa ance	$_{\rm OS} = -15 \mathrm{V}$	$V_{GS} = 0 \text{ V } f = 1.0 \text{ MHz}$	Q7 Q2		65 70		pF
R _G	Gata Pesis Ince	V _{CS} - 15 mV,	f = 1.0 MHz	Q1 Q2		2.1 6.0		Ω
OE	O NOT OF SERVICE REPRES	ENTA	INE.					

Electrical Characteristics (continued) T_A = 25 °C unless otherwise noted **Symbol Parameter Test Conditions** Min Тур Max Units Type Switching Characteristics (Note 2) Turn-On Delay Time Q1 Q1 8 16 ns $V_{DD} = 15 \text{ V}, I_D = 1 \text{ A},$ Q2 14 t_r Turn-On Rise Time $V_{GS} = 10V, R_{GEN} = 6 \Omega$ Q1 5 10 ns 13 Q2 24 t_{d(off)} Turn-Off Delay Time Q1 23 37 ns $V_{DD} = -15 \text{ V}, I_D = -1 \text{ A},$ 25 Q2 14 t_f 6 17 Turn-Off Fall Time V_{GS} = -10V, R_{GEN} = 6 Ω Q1 3 ns 9 Q2 Q_g Q1 пC Total Gate Charge 11.4 16 $V_{\text{DS}} = 15 \text{ V}, \ I_{\text{D}} = 7 \text{ A}, \ V_{\text{GS}} = 10 \text{ V}$ Q2 9.6 Qgs Gate-Source Charge Q1 nC 1.7 Q2 Q2 Q_{gd} Gate-Drain Charge $V_{DS} = -15 \text{ V}, I_{D} = -5 \text{ A}, V_{GS} = -10 \text{ V}$ Q1 2.1 ηC Q2

Drain-Source Diode Characteristics and Maximum Ratings

ls	Maximum Continuous Drain-S	Source Diode Forward Current	1.3 A
I _{SM}	Maximum Plused Drain-Source	ce Diode Forward Current (Note 2) Q Q2	≥0 A -20
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 1.3 $ $V_{GS} = 0 \text{ V}, I_S = 1.3 $ $V_{GS} = 0 \text{ V}, I_S = 1.3 $ $V_{GS} = 0 \text{ V}, I_S = 1.3 $ $V_{GS} = 0 \text{ V}, I_S = 1.3 $ $V_{GS} = 0 \text{ V}, I_S = 1.3 $ $V_{GS} = 0 \text{ V}, I_S = 1.3 $	
t _{rr}	Diode Reverse Recovery Time	$Q1$ $I_F = 7 A^{-1}_{F}/d_t = 1 A/\mu s$ $Q1$ $Q2$ 19	r.S
Q _{rr}	Diode Reverse Recovery Charge	Q2 I _F A g _{II} = 100 µs Q2 6	nC

Notes

1. R_{BLA} is the sum of the junction-to-case and the drain pins. R_{BLC} is guaranteed by designed the drain pins.

b) 12c °/W when mounted on a .02 in² pad of 2 oz (op ser

c) 135 °/W when mounted on a minimum pad.

- cale 1 : n letter size parer
- 2. e Test: Pu'sc Wid h < 300µs, Puty c'ycle < 2.0%
- 3. Starting TJ \sim 25 °C, L = 3mH, I, S = 6A, $V_{DP} = 3.7^{\circ}$, $V_{GS} = 10V$ (Q1).
- Star ng $\Gamma J = 25\,^{\circ}C$, L = 3mH, I_{AS} = \mathcal{E} 4, V_{DD} = 30V, V_{GS} = 10V (Q2).

Typical Characteristics: Q1 (N-Channel)

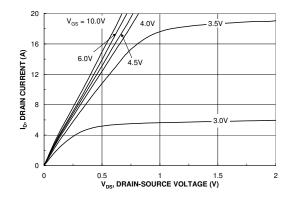


Figure 1. On-Region Characteristics.

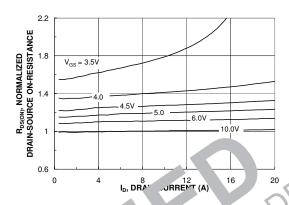
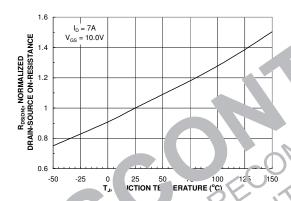



Figure 2. On-Re. tar. Vari on with Drain rrent d G oltage.

Figu 3 Pesicance Variation with mperature.

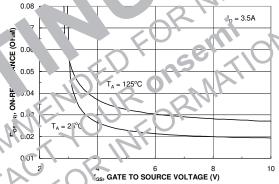


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

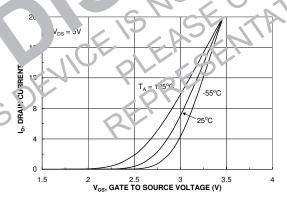
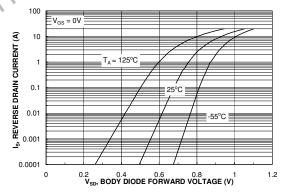
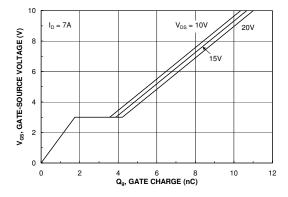
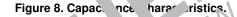
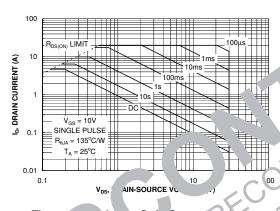


Figure 5. Transfer Characteristics.


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.


Typical Characteristics: Q1 (N-Channel)

600 C_{iss} C_{oss} C_{oss}

Figure 7. Gate Charge Characteristics.

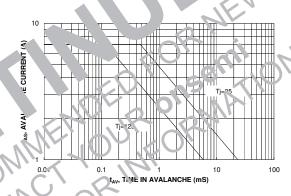


Figure . Iv. axim. 1 Saf Operating Area.

Figure 10. Unclamped Inductive Switching Capability Figure

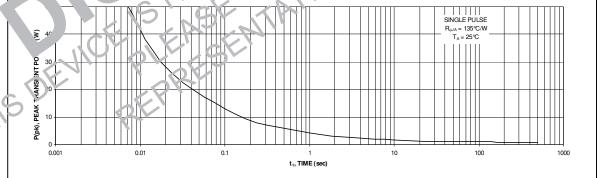


Figure 11. Single Pulse Maximum Power Dissipation.

Typical Characteristics: Q2 (P-Channel)

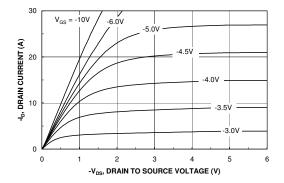


Figure 12. On-Region Characteristics.

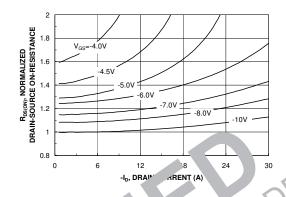
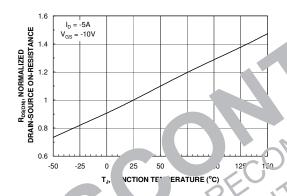



Figure 13. On-Re star Vari ion with Drain rrent d G oltage.

Figur 14 Residence Variation with mperature.

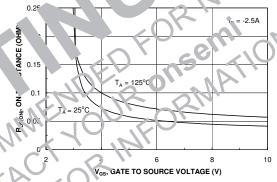


Figure 15. On-Resistance Variation with Gate-to-Source Voltage.

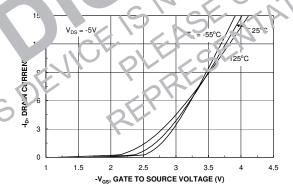


Figure 16. Transfer Characteristics.

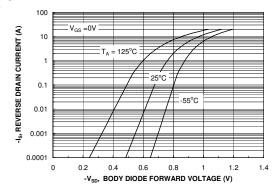


Figure 17. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q2 (P-Channel)

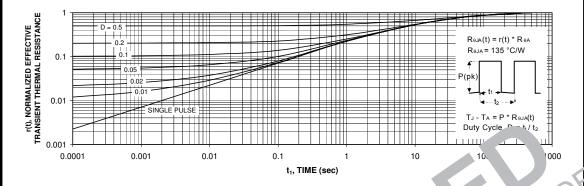


Figure 23. Transient Thermal Response Curve

THIS DEVICE PLEASENTATIVE FOR INFORMATION OF THE PRESENTATIVE FOR Thermal characterization performed using the conditions des Transient thermal response will change depending on the circu

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative