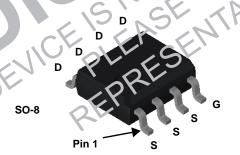
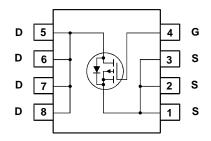


ON Semiconductor®

FDS4141-F085


P-Channel PowerTrench $^{\circledR}$ MOSFET -40V, -10.8A, 19.0m Ω


Features

- Typ $r_{DS(on)} = 10.5 \text{m}\Omega$ at $V_{GS} = -10 \text{V}$, $I_D = -10.5 \text{A}$
- Typ $r_{DS(on)}$ = 14.8m Ω at V_{GS} = -4.5V, I_D = -8.4A
- Typ $Q_{q(TOT)}$ = 35nC at V_{GS} = -10V
- High performance trench technology for extremely low r_{DS(on)}
- RoHS Compliant
- Qualified to AEC Q101

- Control switch in synchronous & n synchronous buck
- Load switch
- Inverter

Units

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DSS}	Drain to Source Voltage	-40	V
V_{GS}	Gate to Source Voltage	±20	V
	Drain Current Continuous (V _{GS} = 10V)	-10.8	^
ID	Pulsed	-36	_ A
E _{AS}	Single Pulse Avalanche Energy	229	mJ
P_{D}	Power Dissipation	1.6	W
T _J , T _{STG}	Operating and Storage Temperature	-55 to +150	°С

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case	<u> </u>	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient SO-8, 1in ² copper pad area	81	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Ree ^{i Ci} ze	ıdth	Quantity
FDS4141	FDS4141-F085	SO-8	13	12mm	2₹00 units

Electrical Characteristics T_A = 25 unless erwise oted

Parameter

Off Ch	aracteristics		MAINTO	150),		
B _{VDSS}	Drain to Sour eal	wn Volt je	$I_{\rm L} = -250 \mu A, V_{\rm GS} = 0 V$	40	-	-	V
I _{DSS}	Zero Gate oltage Dr	aint	V _{DS} = -32V,	-	-	-1	μΑ
loco	Ge* So re Leak	e Current	Voc +2 "V	_	_	+100	nΑ

Test Conditions

Symbol

	Ga. Jource Tirechold Vollage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-1.0	-1.7	-3.0	V
	15' 6	I _D = -10.5A, V _{GS} = -10V	1	10.5	13.0	
	Drain 's Source Cri Resistance	$I_D = -8.4A, V_{GS} = -4.5V$	-	14.8	19.0	mΩ
75/	10 blesses	$I_D = -10.5A, V_{GS} = -10V,$ $T_J = 125^{\circ}C$	-	15.3	19.0	11132
g⊧s	Forward Transconductation	$I_D = -10.5A, V_{DD} = -5V$		34		S

Dynamic Characteristics

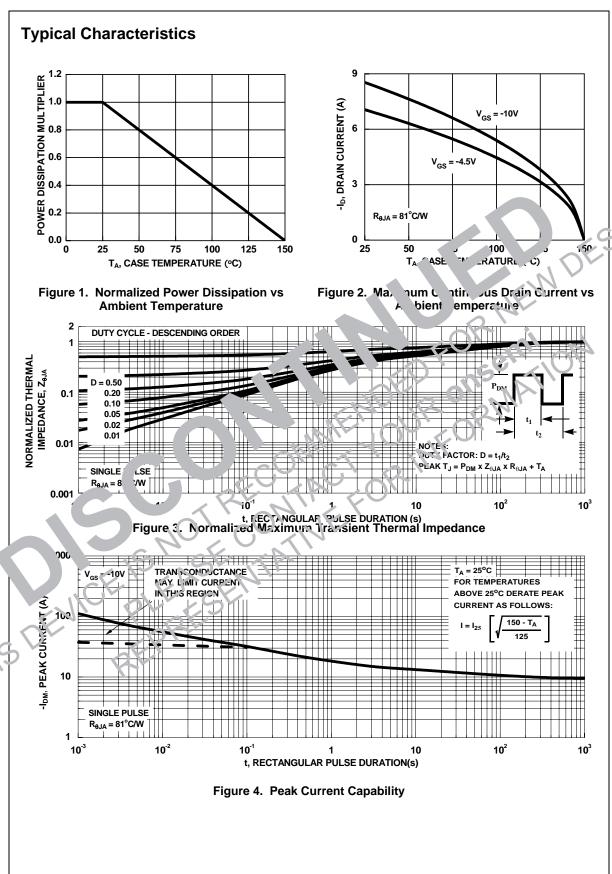
C _{iss}	Input Capacitance	.,	0) /	-	2005	-	pF
Coss	Output Capacitance	20	$V_{DS} = -20V, V_{GS} = 0V,$ f = 1MHz		355	-	рF
C _{rss}	Reverse Transfer Capacitance	1 = 1101112			190	-	pF
R_g	Gate Resistance	f = 1MHz		-	5.0	-	Ω
$Q_{g(TOT)}$	Total Gate Charge at -10V	$V_{GS} = 0 \text{ to } -10V$		-	35	45	nC
Q _{g(-5)}	Total Gate Charge at -5V	$V_{GS} = 0 \text{ to } -5V$	$V_{DD} = -20V$	-	18.6	24.2	nC
Q_{gs}	Gate to Source Gate Charge		$I_D = -10.5A$	-	5.2	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	6.6	-	nC

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units

Switching Characteristics

t _{on}	Turn-On Time		=	-	25	ns
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -20V, I_{D} = -10.5A$ $V_{GS} = -10V, R_{GEN} = 6\Omega$	-	9.7	-	ns
t _r	Rise Time		-	4.4	-	ns
t _{d(off)}	Turn-Off Delay Time		-	41	-	ns
t _f	Fall Time		-	11.6	-	ns
t _{off}	Turn-Off Time		-	-	84	ns


Drain-Source Diode Characteristics

V _{SD}	Source to Drain Diode Voltage	I _{SD} = -10.5A		-0.8	-1.7	V
		I _{SD} = -2.1A		J.7	2	
t _{rr}	Reverse Recovery Time	I _F = -10.5A, d _{SD} /dt = 100A ่เร	-	2F	34	ກິຣ
Q _{rr}	Reverse Recovery Charge	1F = -10.5A, u _{SD} /dt = 100P ts		J.4	17.4	nC

Notes:

1: Starting $T_J = 25^{\circ}C$, L = 6.2mH, $I_{AS} = -8.6A$

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
All ON Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

Typical Characteristics

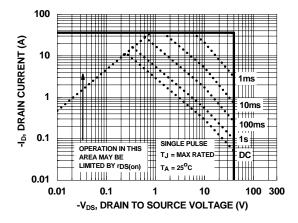
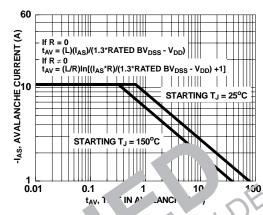
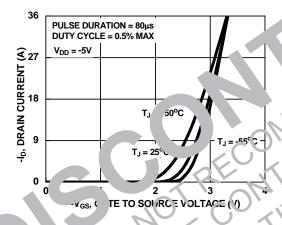




Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to ON Semice vctor plicatic otes AN'75'4 an.'. AN'7515

F. re 7. Transfer Characteristics

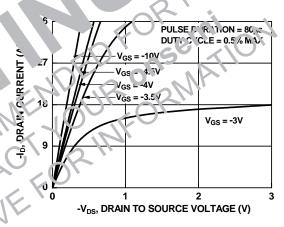


Figure 8. Saturation Characteristics

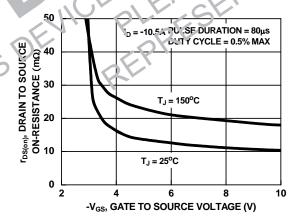


Figure 9. Drain to Source On-Resistance Variation vs Gate to Source Voltage

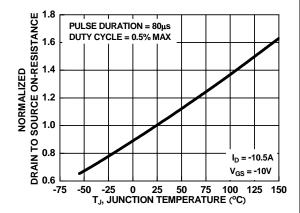


Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics

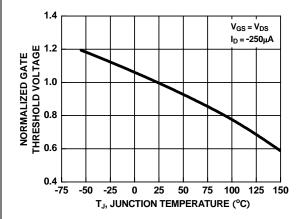


Figure 11. Normalized Gate Threshold Voltage vs **Junction Temperature**

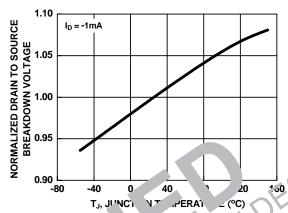


Figure \ Nor lize ain to Source Breakd vn Itage : Junction Temperature

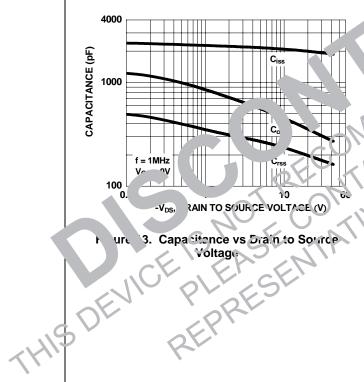


Figure 14. Gate Charge vs Gate to Source Voltage

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative