Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
FDP12N50NZ / FDPF12N50NZ
N-Channel UniFET™ II MOSFET
500 V, 11.5 A, 520 mΩ

Features
• $R_{DS(on)} = 460 \text{ mΩ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 5.75 \text{ A}$
• Low Gate Charge (Typ. 23 nC)
• Low C_{rss} (Typ. 14 pF)
• 100% Avalanche Tested
• ESD Improved Capability
• RoHS Compliant

Applications
• LCD/LED/PDP TV
• Lighting
• Uninterruptible Power Supply

Description
UniFET™ II MOSFET is Fairchild Semiconductor’s high voltage MOSFET family based on advanced planar stripe and DMOS technology. This advanced MOSFET family has the smallest on-state resistance among the planar MOSFET, and also provides superior switching performance and higher avalanche energy strength. In addition, internal gate-source ESD diode allows UniFET II MOSFET to withstand over 2kV HBM surge stress. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

MOSFET Maximum Ratings $T_J = 25^\circ \text{C}$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>FDP12N50NZ</th>
<th>FDPF12N50NZ</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DSS}</td>
<td>Drain to Source Voltage</td>
<td>500</td>
<td>500</td>
<td>V</td>
</tr>
<tr>
<td>V_{GSS}</td>
<td>Gate to Source Voltage</td>
<td>±25</td>
<td>±25</td>
<td>V</td>
</tr>
<tr>
<td>I_D</td>
<td>Drain Current</td>
<td>11.5</td>
<td>11.5*</td>
<td>A</td>
</tr>
<tr>
<td>I_{DM}</td>
<td>Drain Current</td>
<td>46</td>
<td>46*</td>
<td>A</td>
</tr>
<tr>
<td>E_{AS}</td>
<td>Single Pulsed Avalanche Energy</td>
<td>560</td>
<td>560</td>
<td>mJ</td>
</tr>
<tr>
<td>I_{AR}</td>
<td>Avalanche Current</td>
<td>11.5</td>
<td>11.5</td>
<td>A</td>
</tr>
<tr>
<td>E_{AR}</td>
<td>Repetitive Avalanche Energy</td>
<td>17</td>
<td>17</td>
<td>mJ</td>
</tr>
<tr>
<td>dv/dt</td>
<td>MOSFET dv/dt Ruggedness</td>
<td>20</td>
<td>20</td>
<td>V/ns</td>
</tr>
<tr>
<td></td>
<td>Peak Diode Recovery dv/dt</td>
<td>10</td>
<td>10</td>
<td>V/ns</td>
</tr>
<tr>
<td>P_D</td>
<td>Power Dissipation</td>
<td>170</td>
<td>42</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>(Typ. $T_J = 25^\circ \text{C}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Derate above 25°C</td>
<td>1.37</td>
<td>0.33</td>
<td>W/°C</td>
</tr>
<tr>
<td>T_J, T_{STG}</td>
<td>Operating and Storage Temperature Range</td>
<td>-55 to +150</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_L</td>
<td>Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds</td>
<td>300</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

*Drain current limited by maximum junction temperature

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>FDP12N50NZ</th>
<th>FDPF12N50NZ</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JUC}</td>
<td>Thermal Resistance, Junction to Case, Max.</td>
<td>0.73</td>
<td>3.0</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JUA}</td>
<td>Thermal Resistance, Junction to Ambient, Max.</td>
<td>62.5</td>
<td>62.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Device Marking</th>
<th>Device Description</th>
<th>Package</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP12N50NZ</td>
<td>FDP12N50NZ</td>
<td>TO-220</td>
<td>Tube</td>
<td>N/A</td>
<td>50 units</td>
</tr>
<tr>
<td>FDPF12N50NZ</td>
<td>FDPF12N50NZ</td>
<td>TO-220F</td>
<td>Tube</td>
<td>N/A</td>
<td>50 units</td>
</tr>
</tbody>
</table>

Electrical Characteristics

TC = 25°C unless otherwise noted.

Off Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV_DSS</td>
<td>Drain to Source Breakdown Voltage</td>
<td>V_D = 250μA, V_GS = 0V, T_J = 25°C</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>ΔBV_DSS / ΔT_J</td>
<td>Breakdown Voltage Temperature Coefficient</td>
<td>V_D = 250μA, Referenced to 25°C</td>
<td>8</td>
<td>-</td>
<td>0.5</td>
<td>V/°C</td>
</tr>
<tr>
<td>I_DSS</td>
<td>Zero Gate Voltage Drain Current</td>
<td>V_D = 500V, V_GS = 0V</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>I_GSS</td>
<td>Gate to Body Leakage Current</td>
<td>V_GS = ±25V, V_D = 0V</td>
<td>-</td>
<td>-</td>
<td>±10</td>
<td>μA</td>
</tr>
</tbody>
</table>

On Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_GS(th)</td>
<td>Gate Threshold Voltage</td>
<td>V_D = V_D, I_D = 250μA</td>
<td>3.0</td>
<td>-</td>
<td>5.0</td>
<td>V</td>
</tr>
<tr>
<td>R_D(on)</td>
<td>Static Drain to Source On Resistance</td>
<td>V_D = 10V, I_D = 5.75A</td>
<td>-</td>
<td>0.46</td>
<td>0.52</td>
<td>Ω</td>
</tr>
<tr>
<td>g_FS</td>
<td>Forward Transconductance</td>
<td>V_D = 20V, I_D = 5.75A</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>S</td>
</tr>
</tbody>
</table>

Dynamic Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_ss</td>
<td>Input Capacitance</td>
<td>V_D = 25V, V_GS = 0V, f = 1MHz</td>
<td>-</td>
<td>945</td>
<td>1235</td>
<td>pF</td>
</tr>
<tr>
<td>C_oss</td>
<td>Output Capacitance</td>
<td>-</td>
<td>155</td>
<td>205</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Crss</td>
<td>Reverse Transfer Capacitance</td>
<td>-</td>
<td>14</td>
<td>20</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Q_g</td>
<td>Total Gate Charge at 10V</td>
<td>V_D = 400V, I_D = 11.5A</td>
<td>-</td>
<td>23</td>
<td>30</td>
<td>nC</td>
</tr>
<tr>
<td>Q_gs</td>
<td>Gate to Source Gate Charge</td>
<td>V_GS = 10V</td>
<td>-</td>
<td>5.5</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>Q_gd</td>
<td>Gate to Drain “Miller” Charge</td>
<td>(Note 4)</td>
<td>-</td>
<td>9.6</td>
<td>-</td>
<td>nC</td>
</tr>
</tbody>
</table>

Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(on)</td>
<td>Turn-On Delay Time</td>
<td>V_DD = 250V, I_D = 11.5A</td>
<td>-</td>
<td>20</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>t_r</td>
<td>Turn-On Rise Time</td>
<td>R_G = 25Ω</td>
<td>-</td>
<td>50</td>
<td>110</td>
<td>ns</td>
</tr>
<tr>
<td>I(off)</td>
<td>Turn-Off Delay Time</td>
<td>(Note 4)</td>
<td>-</td>
<td>60</td>
<td>130</td>
<td>ns</td>
</tr>
<tr>
<td>t_f</td>
<td>Turn-Off Fall Time</td>
<td>-</td>
<td>45</td>
<td>100</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Drain-Source Diode Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_S</td>
<td>Maximum Continuous Drain to Source Diode Forward Current</td>
<td>-</td>
<td>-</td>
<td>11.5</td>
<td>A</td>
</tr>
<tr>
<td>I_SM</td>
<td>Maximum Pulsed Drain to Source Diode Forward Current</td>
<td>-</td>
<td>-</td>
<td>46</td>
<td>A</td>
</tr>
<tr>
<td>V_SD</td>
<td>Drain to Source Diode Forward Voltage</td>
<td>V_GS = 0V, I_SD = 11.5A</td>
<td>-</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>t_TR</td>
<td>Reverse Recovery Time</td>
<td>V_GS = 0V, I_SD = 11.5A</td>
<td>-</td>
<td>315</td>
<td>-</td>
</tr>
<tr>
<td>Q_TR</td>
<td>Reverse Recovery Charge</td>
<td>dI/dt = 100A/μs</td>
<td>-</td>
<td>2.0</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
1. Repetitive Rating: Pulse width limited by maximum junction temperature
2. L = 8.5mH, I_L = 11.5A, V_DD = 50V, R_G = 25Ω, Starting T_J = 25°C
3. I_SD ≤ 11.5A, dI/dt ≤ 200A/μs, V_DD ≤ BV_DSS, Starting T_J = 25°C
4. Essentially Independent of Operating Temperature Typical Characteristics
Typical Characteristics

Figure 1. On-Region Characteristics

- $V_{GS} = 15.0 \text{ V}$
- 10.0 V
- 8.0 V
- 6.5 V
- 6.0 V
- 5.5 V

*Notes:
1. 250 μs Pulse Test
2. $T_C = 25^\circ\text{C}$

Figure 2. Transfer Characteristics

- $V_{GS} = 15.0 \text{ V}$
- 10.0 V
- 8.0 V
- 7.0 V
- 6.5 V

*Notes:
1. $V_{GS} = 20 \text{ V}$
2. 250 μs Pulse Test

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

- $R_{DS(ON)}$ [\Omega]
- $V_{GS} = 10 \text{ V}$
- $V_{GS} = 20 \text{ V}$

*Note: $T_C = 25^\circ\text{C}$

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

- I_D, Reverse Drain Current [A]
- V_{DS}, Body Diode Forward Voltage [V]

*Notes:
1. $V_{GS} = 0 \text{ V}$
2. 250 μs Pulse Test

Figure 5. Capacitance Characteristics

- $C_{oss} = C_{gs} + C_{gd}$ (C_{ds} is shorted)
- $C_{oss} = C_{ds} + C_{gd}$
- $C_{oss} = C_{gd}$

*Note:
1. $V_{GS} = 0 \text{ V}$
2. $f = 1 \text{ MHz}$

Figure 6. Gate Charge Characteristics

- Q_{g}, Total Gate Charge [nC]
- V_{DS}, Drain-Source Voltage [V]

*Note: $I_D = 11.5 \text{ A}$
Typical Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

![Breakdown Voltage Variation Graph](image)

*Notes:
1. VGS = 0V
2. IO = 250µA

Figure 8. On-Resistance Variation vs. Temperature

![On-Resistance Variation Graph](image)

*Notes:
1. VGS = 10V
2. IO = 5.75A

Figure 9. Maximum Safe Operating Area - FDPF12N50NZ

![Maximum Safe Operating Area Graph](image)

*Notes:
1. TC = 25°C
2. TJ = 150°C
3. Single Pulse

Figure 10. Maximum Safe Operating Area - FDP12N50NZ

![Maximum Safe Operating Area Graph](image)

*Notes:
1. TC = 25°C
2. TJ = 150°C
3. Single Pulse

Figure 11. Maximum Drain Current vs. Case Temperature

![Maximum Drain Current Graph](image)

ID, Drain Current [A] vs. TC, Case Temperature [°C]
Typical Characteristics (Continued)

Figure 12. Transient Thermal Response Curve - FDP12N50NZ

![Graph showing transient thermal response curve for FDP12N50NZ](image)

Figure 13. Transient Thermal Response Curve - FDPF12N50NZ

![Graph showing transient thermal response curve for FDPF12N50NZ](image)

Notes:
1. $Z_{jc}(t) = 0.73^\circ C/W$ Max.
2. Duty Factor, $D = \frac{t_1}{t_2}$
3. $T_{JM} - T_C = P_{DM} \cdot Z_{jc}(t)$

$Z_{jc}(t)$, Thermal Response [$^\circ C/W$]

t_1, Square Wave Pulse Duration [sec]
Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms

- DUT
- V_{DS}
- I_{SD}
- Driver
- R_G
- Same Type as DUT
- V_{DD}
- Body Diode
- Forward Voltage Drop
- V_{SD}
- Body Diode Forward Current
- I_{FM}
- DI/dt
- Body Diode Reverse Current
- I_{RM}
- Body Diode Recovery dv/dt
- V_{DD}
- Body Diode Forward Voltage Drop

\[V_{GS} \quad \text{(Driver)} \]

\[D = \frac{\text{Gate Pulse Width}}{\text{Gate Pulse Period}} \]

\[10V \]

\[V_{DS} \quad \text{(DUT)} \]

\[I_{SD} \quad \text{(DUT)} \]

\[I_{FM}, \text{Body Diode Forward Current} \]

\[I_{RM} \]

\[\text{Body Diode Reverse Current} \]

\[\text{Body Diode Recovery dv/dt} \]

\[V_{DD} \]

\[V_{SD} \]

\[\text{Body Diode Forward Voltage Drop} \]
Mechanical Dimensions

TO-220F 3L

NOTES:
A. EXCEPT WHERE NOTED CONFORMS TO EIAJ SC91A.
B. DOES NOT COMPLY EIAJ STD. VALUE.
C. ALL DIMENSIONS ARE IN MILLIMETERS.
D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
F. OPTION 1 - WITH SUPPORT PIN HOLE.
 OPTION 2 - NO SUPPORT PIN HOLE.
G. DRAWING FILE NAME: TO220M03REV4
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AttitudeEngine™
Awinda®
AX-ACAP™
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSmart®
EfficientMax™
ESBC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FastCore™
FETBench™
FPS™
F-PFS™
FRFET®
Global Power ResourceSM
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Marking Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPack™
MillerDrive™
MotionMax™
MotionGrid™
MT®
MTX®
MVN®
mWSaver®
OptoMT™
OPTOPLANAR®
OPTOLOGIC®
Power Supply WebDesigner™
PowerTrench™
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/mm2kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMICONDIOM.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS. SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE
Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer’s use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild’s product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild’s Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use.Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Counterfeiting is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and resolve any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

Rev. 177

©2010 Fairchild Semiconductor Corporation
FDP12N50NZ / FDPF12N50NZ Rev. 1.5
www.fairchildsemi.com