

MOSFET - N-Channel, **UltraFET Trench**

220 V, 7.0 A, 366 m Ω

FDMC2674

General Description

UltraFET device combines characteristics that enable benchmark efficiency in power conversion applications. Optimized for R_{DS(on)}, low ESR, low total and Miller gate charge, these devices are ideal for high frequency DC to DC converters.

Features

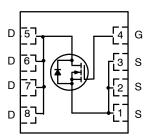
- Max $R_{DS(on)} = 366 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 1.0 \text{ A}$
- Typ $Q_g = 12.7 \text{ nC}$ at $V_{GS} = 10 \text{ V}$
- Low Miller Charge
- Low Q_{rr} Body Diode
- Optimized Efficiency at High Frequencies
- UIS Capability (Single Pulse and Repetitive Pulse)
- Pb-Free, Halide Free and RoHS Compliant

Applications

- DC-DC Converters and Off-Line UPS
- Distributed Power Architectures

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Value	Unit
V _{DS}	Drain to Source Voltage	220	11
V _{GS}	Gate to Source Voltage	±20	V
I _D	$\begin{array}{ll} \text{Drain Current:} \\ \text{Continuous (Silicon limited)} & T_C = 25^{\circ}\text{C} \\ \text{Continuous (Note 1b)} & T_{A} = 25^{\circ}\text{C} \\ \text{Pulsed} \end{array}$	7.0 1.0 13.8	Α
E _{AS}	Single Pulse Avalanche Energy (Note 3)	11	mJ
P _D	Power Dissipation: T _C = 25°C T _A = 25°C (Note 1a)	42 2.1	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case (Note 1)	3.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	60	

1

V _{DS}	R _{DS(ON)} MAX	I _D MAX
220 V	366 mΩ @ 10 V	7.0 A

N-CHANNEL MOSFET

WDFN8 3.3 × 3.3, 0.65P

MARKING DIAGRAM

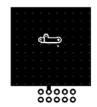
FDMC 2674 **ALYW**

FDMC2674 = Specific Device Code = Assembly Site = Wafer Lot Number YW = Assembly Start Week

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMC2674	WDFN8 (Pb–Free, Halide Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


FDMC2674

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARA	ACTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	220	-	_	V
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	-	248	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 176 V, V _{GS} = 0 V	-	-	1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA
N CHARA	CTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	3.4	4	V
$\Delta V_{GS(th)} / \Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	-	-10.2	-	mV/°C
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 1.0 A	-	305	366	mΩ
		V _{GS} = 10 V, I _D = 1.0 A, T _J = 150°C		678	814	
YNAMIC C	HARACTERISTICS				SIG	
C _{iss}	Input Capacitance	V _{DS} = 100 V, V _{GS} = 0 V, f = 1 MHz	-	880	1180	pF
C _{oss}	Output Capacitance		-//	70	95	pF
C _{rss}	Reverse Transfer Capacitance		Mr	11	20	pF
WITCHING	CHARACTERISTICS		in	1		
t _{d(on)}	Turn-On Delay Time	V_{DD} = 100 V, I_{D} = 1.0 A, V_{GS} = 10 V, R_{GEN} = 2.4 Ω	e G	(9)	18	ns
t _r	Rise Time	$V_{GS} = 10 \text{ V}, H_{GEN} = 2.4 \Omega$	7-1	13	23	ns
t _{d(off)}	Turn-Off Delay Time	ENLIR	5///	15	27	ns
t _f	Fall Time	WALL TOO'EO	-	21	34	ns
$Q_{g(TOT)}$	Total Gate Charge at 10 V	$V_{GS} = 0 \text{ V to } 10 \text{ V}, V_{DD} = 15 \text{ V}, I_D = 1.0 \text{ A}$	-	12.7	18	nC
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 15 V, I _D = 1.0 A	-	3.8	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	V _{DD} = 15 V, I _D = 1.0 A	-	2.9	-	nC
RAIN-SOU	RCE DIODE CHARACTERISTICS	TAIL				
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.2 A (Note 2)	-	0.8	1.5	V
t _{rr}	Reverse Recovery Time	I _F = 1.0 A, di/dt = 100 A/μs	-	-	60	ns
Q _{rr}	Reverse Recovery Charge	1	-	-	109	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² oz copper pad on a 1.5 × 1.5 in. board of FR–4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.
 - (a) $R_{\theta JA} = 60^{\circ}\text{C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5' × 1.5' × 0.062' thick PCB.
 - (b) $R_{\theta JA} = 135^{\circ}C/W$ when mounted on a minimum pad of 2 oz copper.

a) 60°C/W when mounted on a 1 in² pad of 2 oz copper.

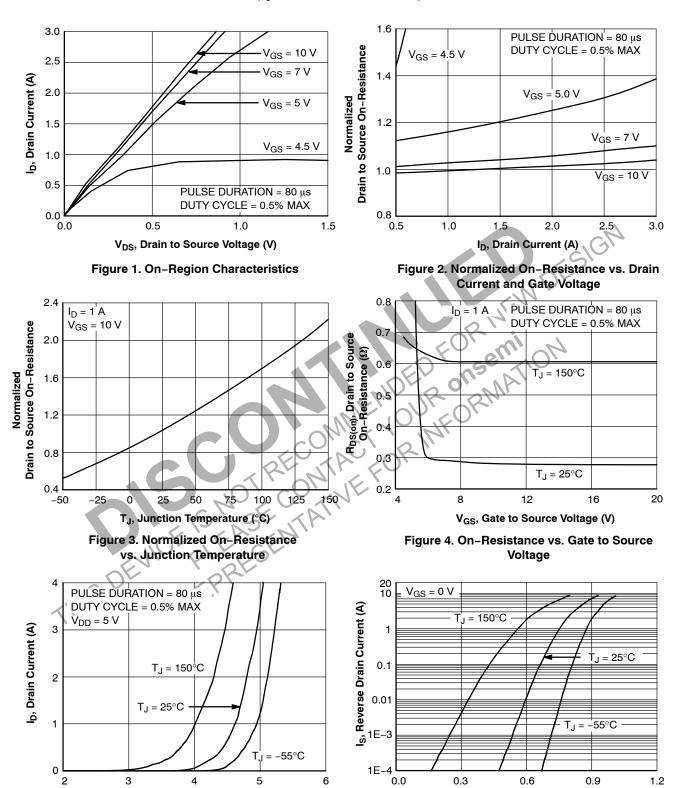
b) 135°C/W when mounted on a minimum pad of 2 oz copper.

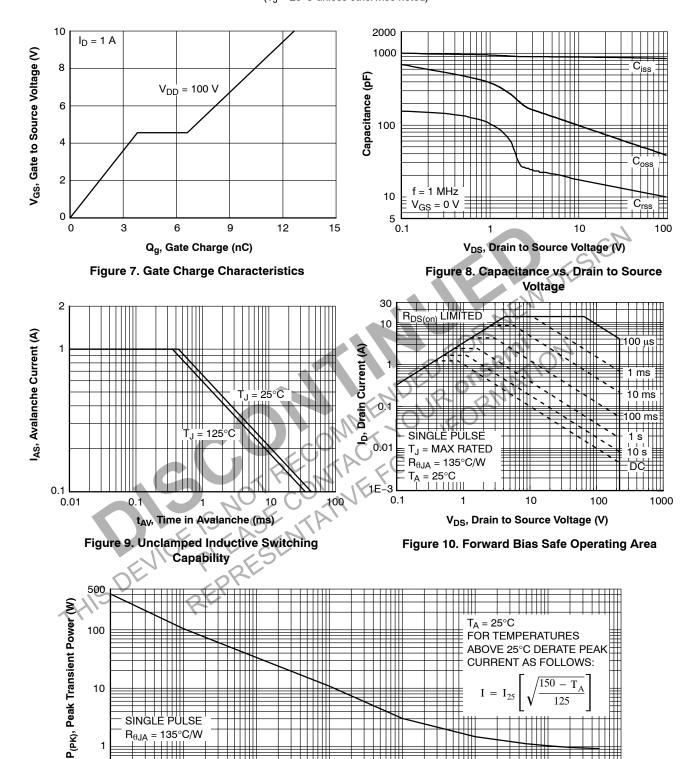
- 2. Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
- 3. Starting $T_J = 25$ °C; N-ch: L = 1 mH, $I_{AS} = 4.7$ A, $V_{DD} = 25$ V, $V_{GS} = 10$ V.

FDMC2674

TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)




Figure 5. Transfer Characteristics Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

V_{SD}, Body Diode Forward Voltage (V)

V_{GS}, Gate to Source Voltage (V)

TYPICAL CHARACTERISTICS (continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

t, Pulse Width (s)
Figure 11. Single Pulse Maximum Power Dissipation

10⁰

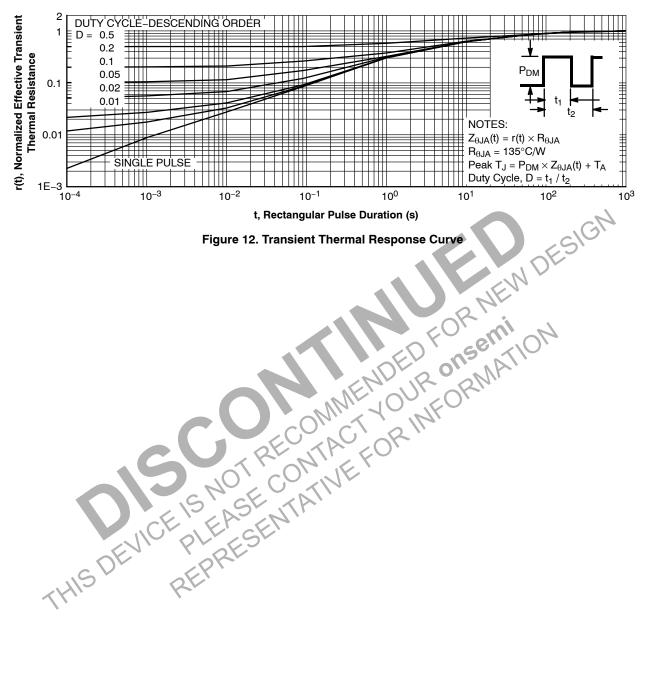
10¹

10²

10³

0.5

10

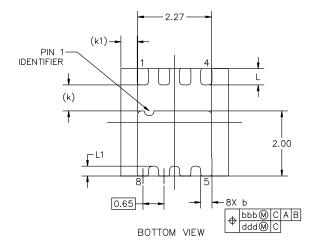

10⁻³

10-2

FDMC2674

TYPICAL CHARACTERISTICS (continued)

(T_J = 25°C unless otherwise noted)

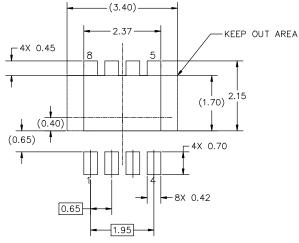

PIN 1

IDENTIFIER

WDFN-8 3.30x3.30x0.75, 0.65P CASE 511DH **ISSUE A**

aga C Ð Α В Ė

TOP VIEW // ccc C SEATING PLANE △ eee C Α1 Ċ (A3) SIDE VIEW



NOTES:

DATE 04 DEC 2025

- DIMENSIONING AND TOLERANCING
 AS PER ASME Y14.5M, 2018.
 CONTROLLING DIMENSION:
- MILLIMETERS.

MILLIMETERS					
DIM	MIN	NOM	MAX		
А	0.70	0.75	0.80		
A1	0.00	0.025	0.05		
А3		0.20 REF			
b	0.30	0.35	0.40		
D		3.30 BSC			
D2	2.22	2.27	2.32		
E	3.30 BSC				
E2	1.95	2.00	2.05		
е	0.65 BSC				
k	0.80 REF				
k1	0.50 REF				
L	0.45	0.50	0.55		
L1	0.25	0.30	0.35		
TOLERANCE FORM & POSITION					
aaa	0.05				
bbb	0.10				
ccc	0.10				
ddd	0.05				
eee	0.08				

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code = Assembly Location

= Year WW = Work Week

XXXXX **AYWW**

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques reference manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13625G Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN-8 3.30x3.30x0.75, 0.65P		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales