onsemi

MOSFET – Dual, N-Channel, POWERTRENCH[®]

30 V, 4.8 A, 40 m Ω

FDMB3800N

General Description

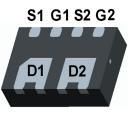
These N-Channel Logic Level MOSFETs are produced using **onsemi**'s advanced POWERTRENCH process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features

- Max $r_{DS(on)} = 40 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 4.8 \text{ A}$
- Max $r_{DS(on)} = 51 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 4.3 \text{ A}$
- Fast Switching Speed
- Low Gate Charge
- High Performance Trench Technology for Extremely Low rDS(on)
- High Power and Current Handling Capability
- This Device is Pb-Free, Halide Free and is RoHS Compliant

MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise noted)

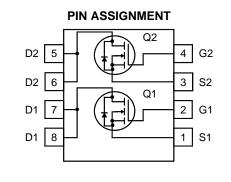

Symbol	Parameter	Ratings	Unit
V _{DS}	Drain to Source Voltage	30	V
V _{GS}	Gate to Source Voltage	±20	V
Ι _D	Drain Current – Continuous T _A = 25°C (Note 1a) – Pulsed	4.8 9	A
P _D	Power Dissipation $T_A = 25^{\circ}C$ (Note 1a) $T_A = 25^{\circ}C$ (Note 1b)	1.6 0.75	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS (T_A = 25°C, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1a)	80	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1b)	165	

V _{DS}	r _{DS(on)} MAX	I _D MAX
30 V	40 mΩ @ 4.8 V	4.8 A
	51 mΩ @ 4.3 V	



WDFN8 3x1.9, 0.65P (MicroFET 3x1.9) CASE 511CW

- \$Y = Logo
- &Z = Assembly Plant Code
- &2 = 2–Digit Date Code
- &K = 2–Digits Lot Run Traceability Code
- 3800 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

1

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Parameter	Test Condition	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	30	-	-	V	
Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25°C	-	24	-	mV/°C	
Zero Gate Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$	-	-	1	μΑ	
	V_{DS} = 24 V, V_{GS} = 0 V, T_J = 55°C	-	-	10		
Gate to Source Leakage Current	$V_{GS} = \pm 20$ V, $V_{DS} = 0$ V	-	-	±100	nA	
	ACTERISTICS Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	ACTERISTICSDrain to Source Breakdown Voltage $I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$ Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu A, \ referenced to 25^{\circ}C$ Zero Gate Voltage Drain Current $V_{DS} = 24 \ V, \ V_{GS} = 0 \ V$ $V_{DS} = 24 \ V, \ V_{GS} = 0 \ V, \ T_J = 55^{\circ}C$	ACTERISTICSDrain to Source Breakdown Voltage $I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$ 30Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu A, \ referenced to 25^{\circ}C$ -Zero Gate Voltage Drain Current $V_{DS} = 24 \ V, \ V_{GS} = 0 \ V$ - $V_{DS} = 24 \ V, \ V_{GS} = 0 \ V, \ T_J = 55^{\circ}C$ -	ACTERISTICSDrain to Source Breakdown Voltage $I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$ 30-Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu A, \ referenced to 25^{\circ}C$ -24Zero Gate Voltage Drain Current $V_{DS} = 24 \ V, \ V_{GS} = 0 \ V$ $V_{DS} = 24 \ V, \ V_{GS} = 0 \ V, \ T_J = 55^{\circ}C$	ACTERISTICSDrain to Source Breakdown Voltage $I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$ 30 $ -$ Breakdown Voltage Temperature Coefficient $I_D = 250 \ \mu A, \ referenced to 25^{\circ}C$ $ 24$ $-$ Zero Gate Voltage Drain Current $V_{DS} = 24 \ V, \ V_{GS} = 0 \ V$ $ 1$ $V_{DS} = 24 \ V, \ V_{GS} = 0 \ V, \ T_J = 55^{\circ}C$ $ 10$	

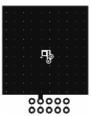
ON CHARACTERISTICS

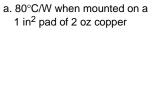
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	1	1.9	3	V
$\frac{\Delta V_{\text{GS(th)}}}{\Delta T_{\text{J}}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25°C	-	-4	-	mV/°C
r _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 4.8 \text{ A}$	-	32	40	mΩ
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 4.3 \text{ A}$	-	41	51	
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 4.8 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$	-	43	61	
9 FS	Forward Transconductance	V _{DS} = 5 V, I _D = 4.8 A	_	14	-	S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V_{DS} =15 V, V_{GS} = 0 V, f = 1 MHz	-	350	465	pF
C _{oss}	Output Capacitance		-	90	120	pF
C _{rss}	Reverse Transfer Capacitance		-	40	60	pF
Rg	Gate Resistance	f = 1 MHz	-	3	-	Ω

SWITCHING CHARACTERISTICS


t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 1 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$	—	8	16	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$	-	5	10	ns
t _{d(off)}	Turn-Off Delay Time		-	21	34	ns
t _f	Fall Time		-	2	10	ns
Q _{g(TOT)}	Total Gate Charge at 5 V	V_{GS} = 0 V to 5 V, V_{DD} = 15 V, I_{D} = 7.5 A	-	4	5.6	nC
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 15 V, I _D = 7.5 A	-	1.0	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	1.5	-	nC

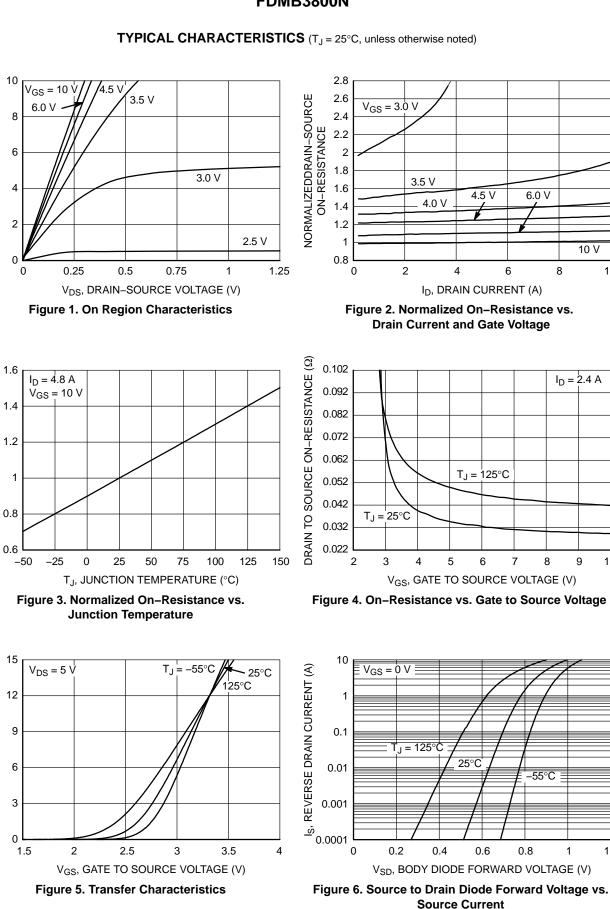

DRAIN-SOURCE CHARACTERISTICS

۱ _S	Maximum Continuous Drain – Source Diode Forward Current			-	1.25	А
V_{SD}	Source to Drain Diode Forward Voltage $V_{GS} = 0 V$, $I_S = 1.25 A$ (Note 2)		-	0.8	1.2	V
t _{rr}	Reverse Recovery Time $I_F = 4.8 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		-	17	-	ns
Q _{rr}	Reverse Recovery Charge		-	7	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

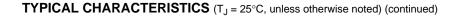
b. 165°C/W when mounted on a minimum pad of 2 oz copper


2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

ID, DRAIN CURRENT (A)

NORMALIZED DRAIN-SOURCE

ID, DRAIN CURRENT (A)


ON-RESISTANCE

10

10

1.2

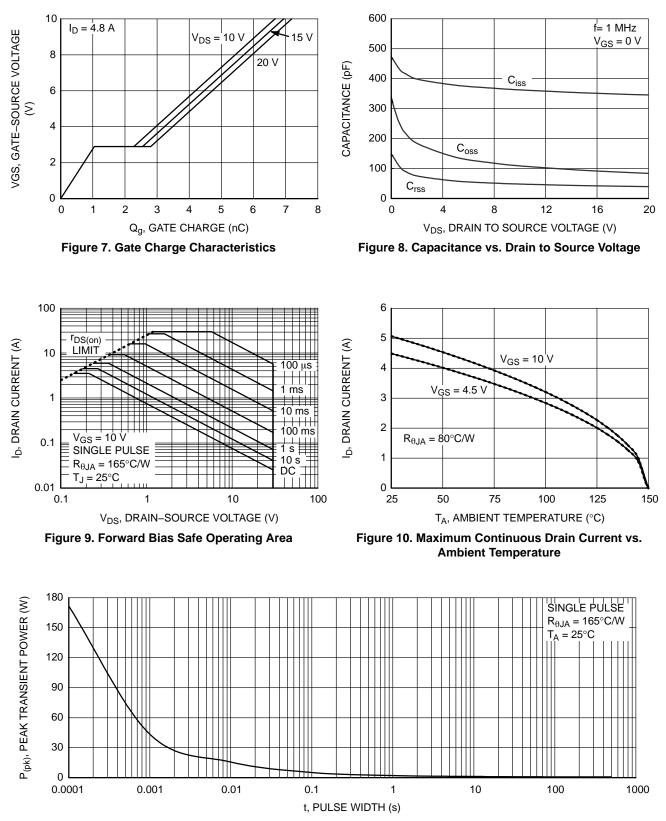


Figure 11. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS ($T_J = 25^{\circ}C$, unless otherwise noted) (continued)

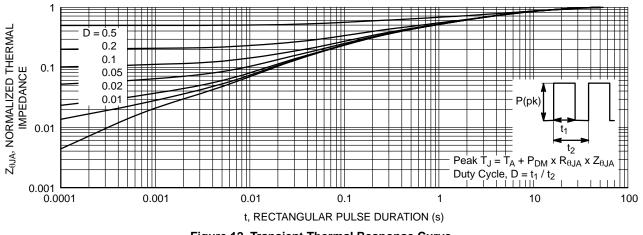
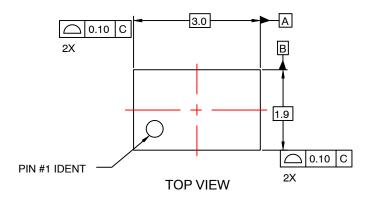


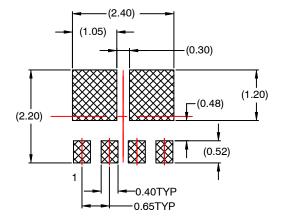
Figure 12. Transient Thermal Response Curve

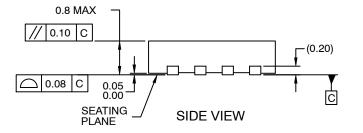
PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package	Reel Size	Tape Width	Shipping [†]
FDMB3800N	3800	WDFN8 3x1.9, 0.65P (MicroFET 3x1.9) (Pb-Free, Halide Free)	7"	8 mm	3000 / Tape & Reel

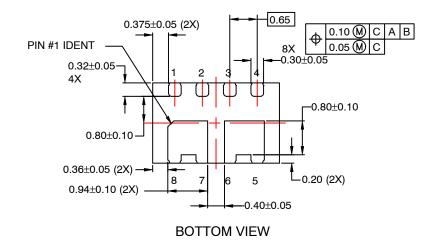
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


MicroFET is trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


WDFN8 3x1.9, 0.65P CASE 511CW ISSUE O

DATE 31 JUL 2016


RECOMMENDED LAND PATTERN

NOTES:

A DOES NOT FULLY CONFORM TO JEDED REGISTRATION MO-229.

- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.

DOCUMENT NUMBER:	98AON13611G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	WDFN8 3X1.9, 0.65P	-	PAGE 1 OF 1			

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>