Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation, special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any device intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
FDD24AN06LA0_F085
N-Channel Logic Level PowerTrench® MOSFET
60V, 36A, 24mΩ

Features
• $r_{DS(ON)} = 20mΩ$ (Typ.), $V_{GS} = 5V$, $I_D = 36A$
• $Q_g$ (tot) = 16nC (Typ.), $V_{GS} = 5V$
• Low Miller Charge
• Low $Q_{RR}$ Body Diode
• UIS Capability (Single Pulse and Repetitive Pulse)
• Qualified to AEC Q101
• RoHS Compliant
Formerly developmental type 83547

Applications
• Motor / Body Load Control
• ABS Systems
• Powertrain Management
• Injection Systems
• DC-DC converters and Off-line UPS
• Distributed Power Architectures and VRMs
• Primary Switch for 12V and 24V systems

MOSFET Maximum Ratings $T_C = 25°C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{DSS}$</td>
<td>Drain to Source Voltage</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>$V_{GS}$</td>
<td>Gate to Source Voltage</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>$I_D$</td>
<td>Drain Current</td>
<td>40</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Continuous ($T_C = 25°C$, $V_{GS} = 10V$)</td>
<td>36</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Continuous ($T_C = 25°C$, $V_{GS} = 5V$)</td>
<td>25</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Continuous ($T_C = 100°C$, $V_{GS} = 5V$)</td>
<td>7.1</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Pulsed</td>
<td>Figure 4</td>
<td>A</td>
</tr>
<tr>
<td>$E_{AS}$</td>
<td>Single Pulse Avalanche Energy (Note 1)</td>
<td>32</td>
<td>mJ</td>
</tr>
<tr>
<td>$P_D$</td>
<td>Power dissipation</td>
<td>75</td>
<td>W</td>
</tr>
<tr>
<td>$T_J, T_{STG}$</td>
<td>Operating and Storage Temperature</td>
<td>-55 to 175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{JUC}$</td>
<td>Thermal Resistance Junction to Case TO-252</td>
<td>2.0</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{JJA}$</td>
<td>Thermal Resistance Junction to Ambient TO-252</td>
<td>100</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{JUA}$</td>
<td>Thermal Resistance Junction to Ambient TO-252, 1in² copper pad area</td>
<td>52</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
### Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Device Marking</th>
<th>Device</th>
<th>Package</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD24AN06LA0</td>
<td>FDD24AN06LA0</td>
<td>TO-252AA</td>
<td>330mm</td>
<td>16mm</td>
<td>2500 units</td>
</tr>
</tbody>
</table>

### Electrical Characteristics

**Symbol** | **Parameter** | **Test Conditions** | **Min** | **Typ** | **Max** | **Units**<br>**V<sub>DS</sub>** | **G<sub>S</sub>**<br>
---|---|---|---|---|---|---|---|
**B<sub>VDS</sub>** | Drain to Source Breakdown Voltage | | 60 | - | - | V |<br>
**I<sub>D</sub>** | Zero Gate Voltage Drain Current | | - | - | 1 | μA |<br>
**I<sub>G</sub>** | Gate to Source Leakage Current | | - | - | ±100 | nA |<br>

**On Characteristics**

| **V<sub>GS(TH)</sub>** | Gate to Source Threshold Voltage | V<sub>GS</sub> = V<sub>DS</sub>, I<sub>D</sub> = 250μA | 1 | - | 2 | V |<br>
| **r<sub>DS(ON)</sub>** | Drain to Source On Resistance | I<sub>D</sub> = 40A, V<sub>GS</sub> = 10V | - | 0.016 | 0.019 | |<br>
| | | I<sub>D</sub> = 36A, V<sub>GS</sub> = 5V | - | 0.020 | 0.024 | Ω |<br>
| | | I<sub>D</sub> = 36A, V<sub>GS</sub> = 5V, T<sub>J</sub> = 175°C | - | 0.047 | 0.056 | |<br>

### Dynamic Characteristics

| **C<sub>ISS</sub>** | Input Capacitance | V<sub>DS</sub> = 25V, V<sub>GS</sub> = 0V, f = 1MHz | - | 1850 | - | pF |<br>
| **C<sub>OSS</sub>** | Output Capacitance | | - | 180 | - | pF |<br>
| **C<sub>RSS</sub>** | Reverse Transfer Capacitance | | - | 75 | - | pF |<br>
| **Q<sub>g(TOT)</sub>** | Total Gate Charge at 5V | V<sub>GS</sub> = 0V to 5V | 16 | 21 | nC |<br>
| **Q<sub>g(TH)</sub>** | Threshold Gate Charge | V<sub>GS</sub> = 0V to 1V | V<sub>DS</sub> = 30V | 1.8 | 2.4 | nC |<br>
| **Q<sub>g2</sub>** | Gate Charge Threshold to Plateau | | I<sub>D</sub> = 36A | - | 6.3 | - | nC |<br>
| **Q<sub>gd</sub>** | Gate to Drain “Miller” Charge | | I<sub>G</sub> = 1.0mA | - | 4.5 | - | nC |<br>

### Switching Characteristics (V<sub>GS</sub> = 5V)

| **t<sub>ON</sub>** | Turn-On Time | V<sub>DD</sub> = 30V, I<sub>D</sub> = 36A | - | - | 195 | ns |<br>
| **t<sub>ON</sub>** | Turn-On Delay Time | | V<sub>DD</sub> = 30V, I<sub>D</sub> = 36A | - | 12 | - | ns |<br>
| **t<sub>f</sub>** | Rise Time | V<sub>GS</sub> = 5V, R<sub>G</sub> = 9.1Ω | - | 118 | - | ns |<br>
| **t<sub>d</sub>** | Turn-Off Delay Time | | V<sub>GS</sub> = 5V | - | 26 | - | ns |<br>
| **t<sub>f</sub>** | Fall Time | | | - | 41 | - | ns |<br>
| **t<sub>OFF</sub>** | Turn-Off Time | | | - | 101 | ns |<br>

### Drain-Source Diode Characteristics

| **V<sub>SD</sub>** | Source to Drain Diode Voltage | I<sub>SD</sub> = 36A | - | - | 1.25 | V |<br>
| **t<sub>r</sub>** | Reverse Recovery Time | I<sub>SD</sub> = 36A, dI<sub>SD</sub>/dt = 100A/μs | - | - | 34 | ns |<br>
| **Q<sub>RR</sub>** | Reverse Recovered Charge | I<sub>SD</sub> = 36A, dI<sub>SD</sub>/dt = 100A/μs | - | - | 30 | nC |<br>

**Notes:**
1. Starting T<sub>J</sub> = 25°C, L = 80µH, I<sub>AS</sub> = 28A.
Typical Characteristics \( T_C = 25^\circ C \) unless otherwise noted

Figure 1. Normalized Power Dissipation vs Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

Notes:
- Duty Factor: \( D = \frac{t_1}{t_2} \)
- Peak \( T_J = P_{DM} \times Z_{\theta JC} \times R_{\theta JC} + T_C \)

FOR TEMPERATURES ABOVE 25°C DERMATE PEAK CURRENT AS FOLLOWS:

\[ I = I_{GS} \left( \frac{175 - T_C}{150} \right) \]
Typical Characteristics  $T_C = 25^\circ C$ unless otherwise noted

Figure 5. Forward Bias Safe Operating Area

Figure 6. Unclamped Inductive Switching Capability

Figure 7. Transfer Characteristics

Figure 8. Saturation Characteristics

Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Note: Refer to Fairchild Application Notes AN7514 and AN7515
Typical Characteristics  \( T_C = 25^\circ C \) unless otherwise noted

Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

Figure 13. Capacitance vs Drain to Source Voltage

Figure 14. Gate Charge Waveforms for Constant Gate Current
Test Circuits and Waveforms

Figure 15. Unclamped Energy Test Circuit

Figure 16. Unclamped Energy Waveforms

Figure 17. Gate Charge Test Circuit

Figure 18. Gate Charge Waveforms

Figure 19. Switching Time Test Circuit

Figure 20. Switching Time Waveforms
**Thermal Resistance vs. Mounting Pad Area**

The maximum rated junction temperature, $T_{JM}$, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, $P_{DM}$, in an application. Therefore the application’s ambient temperature, $T_A$ ($^\circ$C), and thermal resistance $R_{\theta JA}$ ($^\circ$C/W) must be reviewed to ensure that $T_{JM}$ is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}}$$  
(EQ. 1)

In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of $P_{DM}$ is complex and influenced by many factors:

1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

$$R_{\theta JA} = 33.32 + \frac{23.84}{(0.268 + Area)}$$  
(EQ. 2)  
Area in Inches Squared

$$R_{\theta JA} = 33.32 + \frac{154}{(1.73 + Area)}$$  
(EQ. 3)  
Area in Centimeters Squared
TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

- 2Cool™
- AccuPower™
- Auto-SPM™
- AX-CA-P™
- BitsIC™
- Build it Now™
- CorePLUS™
- CorePOWER™
- CROSSVOLT™
- CTL™
- Current Transfer Logic™
- DEUXPEED™
- Dual Cool™
- EcoSPARK™
- EfficientMax™
- ESBC™
- Fairchild®
- Fairchild Semiconductor®
- FACT Quiet Series™
- FACT®
- FAST®
- FastCore™
- FETBench™
- FlashWriter™
- FIPS™
- F-PPS™
- FRFET™
- Global Power Resource™
- Green FIPS™
- Green FIPS™ e-Series™
- Gmax™
- GTX™
- IntelliMAX™
- ISOLANAR™
- MegaBuck™
- MicroCOUPLER™
- MicroFET™
- Micropak™
- Micropak2™
- MillerDrive™
- MotionMax™
- Motion-SPM™
- mWSaver™
- OptiHVT™
- OPTOLOGIC®
- OPTOPLANAR®
- PDP SPM™
- Power-SPM™
- PowerTrench™
- PowerXS™
- Programmable Active Droop™
- QFET®
- Qs™
- Quiet Series™
- RapidConfigure™
- Saving our world, 1mW/W/kW at a time™
- SignalWise™
- SmartMax™
- SMART START™
- SPM®
- STEALTH™
- SuperFET™
- SuperSOT™-3
- SuperSOT™-6
- SuperSOT™-8
- SuperMOS®
- SyncFET™
- Sync-Lock™
- System General®
- The Power Franchise®
- The Right Technology for Your Success™
- TinyBoost™
- TinyBuck™
- TinyCalc™
- TinyLogic®
- TinyPower™
- TinyPWM™
- TinyWire™
- TranSiC®
- Trifault Detect™
- TRUECURRENT™
- µSerDes™
- UHC®
- Ultra FRFET™
- UniFET™
- VCX™
- VisualMax™
- XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HERIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our website cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

Rev. 155