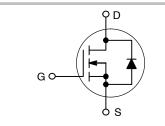
MOSFET – N-Channel, POWERTRENCH®

60 V, 80 A, 5.6 m Ω

FDB86569-F085

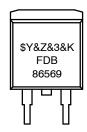
Features

- Typical $R_{DS(on)} = 4.4 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 80 \text{ A}$
- Typical $Q_{g(tot)} = 35 \text{ nC}$ at $V_{GS} = 10 \text{ V}$, $I_D = 80 \text{ A}$
- UIS Capability
- These Device is Pb-Free and is RoHS Compliant
- Qualified to AEC-Q101


Applications

- Automotive Engine Control
- PowerTrain Management
- Solenoid and Motor Drivers
- Integrated Starter/Alternator
- Primary Switch for 12 V Systems

ON Semiconductor®


www.onsemi.com

D2PAK-3 CASE 418AJ FDB SERIES

MARKING DIAGRAM

\$Y = ON Semiconductor Logo

&Z = Assembly Plant Code &3 = Data Code (Year & Week)

&K = Lot

FDB86569 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS ($T_C = 25^{\circ}C$, Unless otherwise noted)

Symbol		Value	Unit	
V_{DSS}	Drain to Source Voltage	60	V	
V_{GS}	Gate to Source Voltage		±20	V
I _D	Drain Current - Continuous (V _{GS} = 10 V) (Note 1) T _C = 25°C		80	Α
	Pulsed Drain Current T _C = 25°C		See Figure 4	Α
E _{AS}	Single Pulse Avalanche E	nergy (Note 2)	41	mJ
P_{D}	Power Dissipation	(T _C = 25°C)	94	W
		- Derate Above 25°C	0.63	W/°C
T _J , T _{STG}	Operating and Storage Te	mperature	-55 to +175	°C
$R_{ heta JC}$	Thermal Resistance Junct	ion to Case	1.6	°C/W
$R_{\theta JA}$	Maximum Thermal Resista	43	°C/W	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Current is limited by bondwire configuration.

- 2. Starting $T_J = 25^{\circ}C$, $L = 15 \mu H$, $I_{AS} = 74 A$, $V_{DD} = 60 V$ during inductor charging and $V_{DD} = 0 V$ during time in avalanche. 3. $R_{\theta JA}$ is the sum of the junction–to–case and case–to–ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design, while $R_{\theta JA}$ is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB86569	FDB86569-F085	D ² -PAK (TO-263)	330 mm	24 mm	800 Units

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
FF CHARAC	TERISTICS	•	*		•	
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	60			V
I _{DSS}	Drain to Source Leakage Current	$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 25^{\circ}\text{C}$			1	μΑ
		V _{DS} = 60 V, V _{GS} = 0 V, T _C = 175°C (Note 1)			1	mA
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V			±100	nA
N CHARACT	ERISTICS					
V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.0	2.8	4.0	V
R _{DS(ON)}	Drain to Source On Resistance	I _D = 80 A, V _{GS} = 10 V, T _J = 25°C		4.4	5.6	mΩ
		I_D = 80 A, V_{GS} = 10 V, T_C = 175°C (Note 1)		8.5	10.8	mΩ
YNAMIC CHA	ARACTERISTICS	•	•		-	
C _{iss}	Input Capacitance	V _{DS} = 30 V, V _{GS} = 0 V, f = 1 MHz		2520		pF
C _{oss}	Output Capacitance	7		690		pF
C _{rss}	Reverse Transfer Capacitance	7		47		pF
Rg	Gate Resistance	f = 1 MHz		2.0		Ω
Q _{g(tot)}	Total Gate Charge at 10 V	V _{GS} = 0 V to 10 V, V _{DD} = 30 V, I _D = 80 A		35	52	nC
Q _{g(th)}	Threshold Gate Charge	V _{GS} = 0 V to 2 V, V _{DD} = 30 V, I _D = 80 A		4.8		nC
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 30 V, I _D = 80 A		14		nC
Q _{gd} Gate to Drain "Miller" Charge				7.4		nC
ESISTIVE SW	/ITCHING CHARACTERISTICS					
t _{ON}	Turn-On Time	$V_{DD} = 30 \text{ V}, I_D = 80 \text{ A},$ $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$			53	ns
t _{d(ON)}	Turn-On Delay	V _{GS} = 10 V, H _{GEN} = 6 Ω		15		ns
t _r	Rise Time	7		20		ns
t _{d(OFF)}	Turn-Off Delay	7		22		ns
t _f	Fall Time			8		ns
t _{OFF} Turn-Off Time					45	ns
RAIN-SOUR	CE DIODE CHARACTERISTICS					
V_{SD}	Source to Drain Diode Voltage	I _{SD} = 80 A, V _{GS} = 0 V			1.25	V
		I _{SD} = 40 A, V _{GS} = 0 V			1.2	V
t _{rr}	Reverse Recovery Time	$I_F = 80 \text{ A}, dI_{SD}/dt = 100 \text{ A/}\mu\text{s},$		52	68	ns
Q _{RR}	Reverse Recovery Charge	V _{DD} = 48 V		43	65	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. The maximum value is specified by design at $T_J = 175^{\circ}$ C. Product is not tested to this condition in production.

TYPICAL CHARACTERISTICS

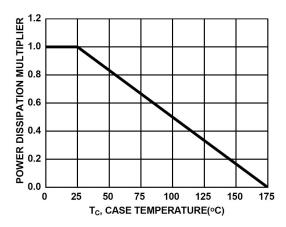


Figure 1. Normalized Power Dissipation vs. Case Temperature

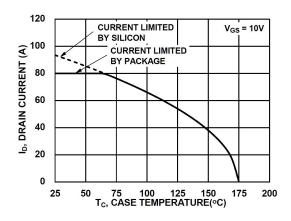


Figure 2. Maximum Continuous Drain Current vs Case Temperature

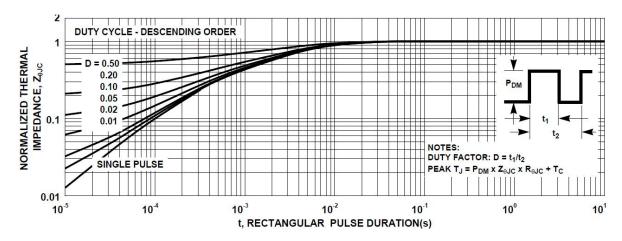


Figure 3. Normalized Maximum Transient Thermal Impedance

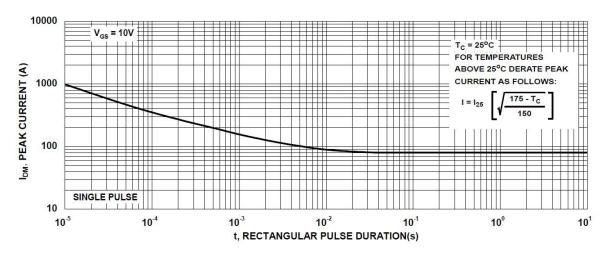


Figure 4. Peak Current Capability

TYPICAL CHARACTERISTICS (Continued)

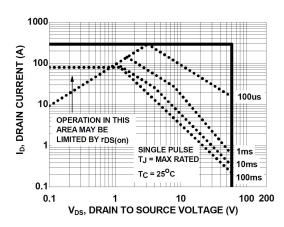


Figure 5. Forward Bias Safe Operating Area

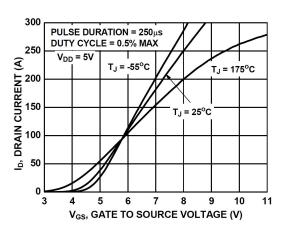


Figure 7. Transfer Characteristics

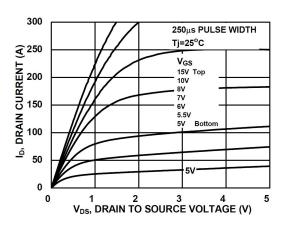


Figure 9. Saturation Characteristics

NOTE: Refer to ON Semiconductor Application Notes <u>AN-7514</u> and <u>AN-7515</u>

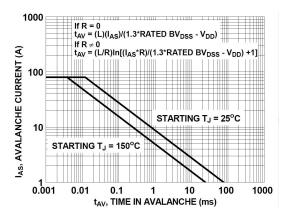


Figure 6. Unclamped Inductive Switching Capability

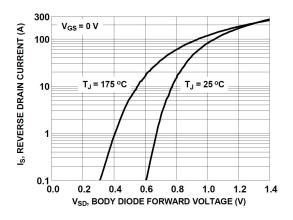


Figure 8. Forward Diode Characteristics

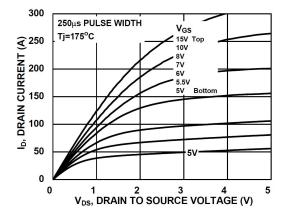


Figure 10. Saturation Characteristics

TYPICAL CHARACTERISTICS (Continued)

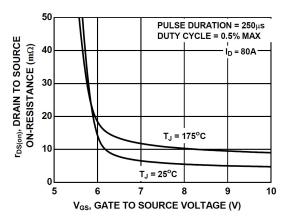


Figure 11. R_{DSON} vs. Gate Voltage

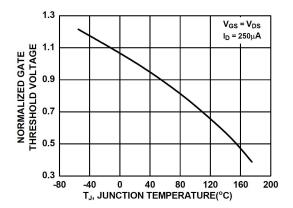


Figure 13. Normalized Gate Threshold Voltage vs. Temperature

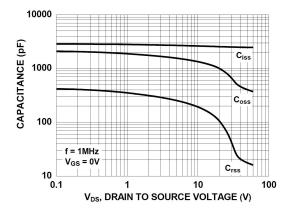


Figure 15. Capacitance vs. Drain to Source Voltage

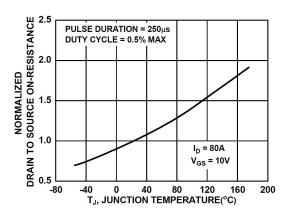


Figure 12. Normalized R_{DSON} vs Junction Temperature

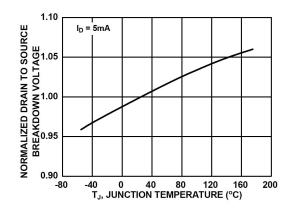


Figure 14. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

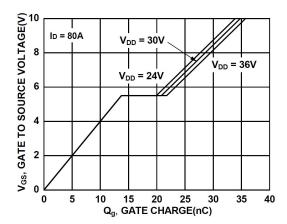


Figure 16. Gate Charge vs. Gate to Source Voltage

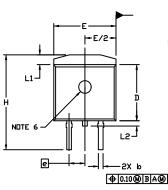
POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

0.653

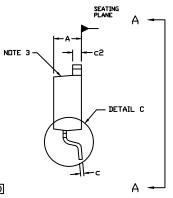
2x 0.063

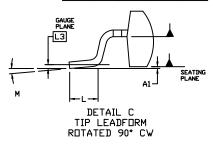
D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ ISSUE F

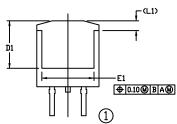
DATE 11 MAR 2021


0.366

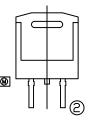
0.169

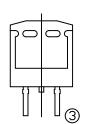

0.100 PITCH

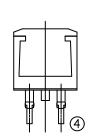

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. CHAMFER OPTIONAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE DUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 5. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1, AND E1.
- 6. OPTIONAL MOLD FEATURE.
- 7. ①,② ... OPTIONAL CONSTRUCTION FEATURE CALL DUTS.


	INC	HES	MILLIMETERS	
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.160	0.190	4.06	4.83
A1	0.000	0.010	0.00	0.25
b	0.020	0.039	0.51	0.99
c	0.012	0.029	0.30	0.74
c2	0.045	0.065	1.14	1.65
D	0.330	0.380	8.38	9.65
D1	0.260		6.60	
E	0.380	0.420	9.65	10.67
E1	0.245		6.22	
e	0.100 BSC		2.54 BSC	
Ξ	0.575	0.625	14.60	15.88
L	0.070	0.110	1.78	2.79
L1		0.066		1.68
L2		0.070		1.78
L3	0.010 BSC		0.25 BSC	
М	0*	8*	0*	8•

RECOMMENDED MOUNTING FOOTPRINT




XXXXXXXX


AWLYWWG

VIEW A-A

GENERIC MARKING DIAGRAMS*

VIEW A-A

OPTIONAL CONSTRUCTIONS

XXXXXX

XXYMW

SSG

AYWW

XXXXXXXXX

Rectifier

AKA

XXXXXX = Specific Device Code

A = Assembly Location

WL = Wafer Lot Y = Year

WW = Work Week

W = Week Code (SSG)

M = Month Code (SSG)

G = Pb-Free Package

AKA = Polarity Indicator

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:

98AON56370E

XXXXXXXX

AYWW

Standard

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

D²PAK-3 (TO-263, 3-LEAD)

PAGE 1 OF 1

onsemi and ONSeMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales