To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
FDB33N25
N-Channel UniFET™ MOSFET
250 V, 33 A, 94 mΩ

Features
- \(R_{DS(on)} = 94 \text{ mΩ (Max.)} @ V_{GS} = 10 \text{ V}, I_D = 16.5 \text{ A} \)
- Low Gate Charge (Typ. 36.8 nC)
- Low \(C_{rss} \) (Typ. 39 pF)
- 100% Avalanche Tested

Applications
- PDP TV
- Lighting
- Uninterrupable Power Supply
- AC-DC Power Supply

Description
UniFET™ MOSFET is Fairchild Semiconductor’s high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Absolute Maximum Ratings \(T_C = 25^\circ \text{C} \) unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>FDB33N25</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DSS})</td>
<td>Drain-Source Voltage</td>
<td>250</td>
<td>V</td>
</tr>
<tr>
<td>(I_D)</td>
<td>Drain Current</td>
<td>- Continuous ((T_C = 25^\circ \text{C}))</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Continuous ((T_C = 100^\circ \text{C}))</td>
<td>20.4</td>
</tr>
<tr>
<td>(I_{DM})</td>
<td>Drain Current</td>
<td>- Pulsed (Note 1)</td>
<td>132</td>
</tr>
<tr>
<td>(V_{GSS})</td>
<td>Gate-Source voltage</td>
<td>(\pm 30)</td>
<td>V</td>
</tr>
<tr>
<td>(E_{AS})</td>
<td>Single Pulsed Avalanche Energy (Note 2)</td>
<td>918</td>
<td>mJ</td>
</tr>
<tr>
<td>(I_{AR})</td>
<td>Avalanche Current (Note 1)</td>
<td>33</td>
<td>A</td>
</tr>
<tr>
<td>(E_{AR})</td>
<td>Repetitive Avalanche Energy (Note 1)</td>
<td>23.5</td>
<td>mJ</td>
</tr>
<tr>
<td>(dv/dt)</td>
<td>Peak Diode Recovery dv/dt (Note 3)</td>
<td>4.5</td>
<td>V/ns</td>
</tr>
<tr>
<td>(P_D)</td>
<td>Power Dissipation ((T_C = 25^\circ \text{C}))</td>
<td>235</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Derate Above 25°C</td>
<td>1.89</td>
</tr>
<tr>
<td>(T_J, T_{STG})</td>
<td>Operating and Storage Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>(T_L)</td>
<td>Maximum Lead Temperature for Soldering, 1/8” from Case for 5 Seconds</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>FDB33N25</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JUC})</td>
<td>Thermal Resistance, Junction-to-Case, Max.</td>
<td>0.53</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUA})</td>
<td>Thermal Resistance, Junction-to-Ambient (1 in² Pad of 2-oz Copper), Max.</td>
<td>40</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUA})</td>
<td>Thermal Resistance, Junction-to-Ambient (Minimum Pad of 2-oz Copper), Max.</td>
<td>62.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDB33N25TM</td>
<td>FDB33N25</td>
<td>D²-PAK</td>
<td>Tape and Reel</td>
<td>330 mm</td>
<td>24 mm</td>
<td>800 units</td>
</tr>
</tbody>
</table>

Electrical Characteristics

$T_C = 25^\circ C$ unless otherwise noted.

#### Symbol	Parameter	Conditions	Min.	Typ.	Max	Unit

Off Characteristics

Parameter	Conditions	Min.	Typ.	Max	Unit
BV_{DSS}	$V_{GS} = 0 V, I_D = 250 \mu A$	250	--	--	V
$\Delta BV_{DSS} / \Delta T_J$	$I_D = 250 \mu A$, Referenced to 25°C	--	0.25	--	V/°C
$IDSS$	$V_{DS} = 250 V, V_{GS} = 0 V$	--	--	1	μA
	$V_{DS} = 200 V, T_C = 125^\circ C$	--	--	10	μA
$IGSSF$	$V_{GS} = 30 V, V_{DS} = 0 V$	--	--	100	nA
$IGSSR$	$V_{GS} = -30 V, V_{DS} = 0 V$	--	--	-100	nA

On Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max	Unit
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3.0	--	5.0	V	
$R_{DS(on)}$	$V_{GS} = 10 V, I_D = 16.5 A$	--	0.77	0.094	Ω	
GFS	$V_{DS} = 40 V, I_D = 16.5 A$	--	26.6	--	S	

Dynamic Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max	Unit
C_{iss}	Input Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V$, $f = 1$ MHz	--	1640	2135	pF
C_{oss}	Output Capacitance	--	330	430	pF	
C_{rss}	Reverse Transfer Capacitance	--	39	40	pF	

Switching Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max	Unit
$t_{(on)}$	Turn-On Delay Time	$V_{DD} = 125 V, I_D = 33 A, V_{GS} = 10 V, R_G = 25 \Omega$	--	35	80	ns
t_{r}	Turn-On Rise Time	--	230	470	ns	
$t_{(off)}$	Turn-Off Delay Time	--	75	160	ns	
t_f	Turn-Off Fall Time	--	120	250	ns	
Q_g	Total Gate Charge	$V_{DS} = 200 V, I_D = 33 A, V_{GS} = 10 V$	--	36.8	48	nC
Q_{gs}	Gate-Source Charge	--	10	--	nC	
Q_{gd}	Gate-Drain Charge	--	17	--	nC	

Drain-Source Diode Characteristics and Maximum Ratings

Symbol	Parameter	Conditions	Min.	Typ.	Max	Unit
I_S	Maximum Continuous Drain-Source Diode Forward Current	--	--	33	A	
I_{SM}	Maximum Pulsed Drain-Source Diode Forward Current	--	--	132	A	
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = 33 A$	--	--	1.4	V
t_{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_S = 33 A$, $dI_{DS}/dt = 100 A/\mu s$	--	220	--	ns
Q_{rr}	Reverse Recovery Charge	--	1.71	--	μC	

Notes:

1. Repetitive rating: pulse-width limited by maximum junction temperature.
2. $L = 1.35 mH$, $I_{DS} = 33 A$, $V_{DD} = 50 V$, $R_G = 25 \Omega$, starting $T_J = 25^\circ C$.
3. $I_{DS} \leq 33 A$, $dI_{DS}/dt \leq 200 A/\mu s$, $V_{GS} \leq BV_{DSS}$, starting $T_J = 25^\circ C$.
4. Essentially independent of operating temperature typical characteristics.
Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics
Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

Figure 11. Transient Thermal Response Curve
Figure 12. Gate Charge Test Circuit & Waveform

Figure 13. Resistive Switching Test Circuit & Waveforms

Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms
Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms
Mechanical Dimensions

Figure 16. TO263 (D²PAK), Molded, 2-Lead, Surface Mount

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:

TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AX-CAP™
BitSIC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EcoSPARK™
EfficientMax™
ESBC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FAST®
FastvCore™
FETBench™
FPS™
F-PFS™
FRFET®
Global Power Resource™
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Marking Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
mWSaver®
OptoHIT™
OPTOLOGIC®
OPTOPLANAR®
PowerTrench®
PowerXS™
Programmable Active Drop™
QFET™
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™
SYSTEM™
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic™
TYNOPTO™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
TrnFault Detect™
TRUECURRENT™
μSerDes™
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system, whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failure, and (iii) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>