

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

July 2010

FAN6982 CCM Power Factor Correction Controller

Features

- Continuous Conduction Mode
- Innovative Switching-Charge Multiplier-Divider
- Average-Current-Mode for Input-Current Shaping
- TriFault Detect™ Prevent Abnormal Operation for Feedback Loop
- Power-On Sequence Control
- Soft-Start Capability
- Brownout Protection
- Cycle-by-Cycle Peak Current Limiting.
- Improves Light-Load Efficiency
- Fulfills Class-D Requirements of IEC 1000-3-2
- Wide Range Universal AC Input Voltage
- Maximum Duty Cycle 97%
- V_{DD} Under-Voltage Lockout (UVLO)

Applications

- Desktop PC Power Supply
- Internet Server Power Supply
- LCD TV/Monitor Power Supply
- DC Motor Power Supply

Description

The FAN6982 is a 14-pin, Continuous Conduction Mode (CCM) PFC controller IC intended for Power Factor Correction (PFC) pre-regulators. The FAN6982 includes circuits for the implementation of leading edge, average current, "boost"-type power factor correction, and results in a power supply that fully complies with the IEC1000-3-2 specification.

A TriFault Detect™ function helps reduce external components and provides full protection for feedback loops such as open, short, and over voltage. An overvoltage comparator shuts down the PFC stage in the event of a sudden load decrease. The RDY signal can be used for power-on sequence control. The EN function can choose to enable or disable the range function. FAN6982 also includes PFC soft-start, peak current limiting, and input voltage brownout protection.

Ordering Information

Part Number Operating Temperature Range		Package	Packing Method	
FAN6982MY	-40°C to +105°C	14-Pin Small Outline Package (SOP)	Tape & Reel	

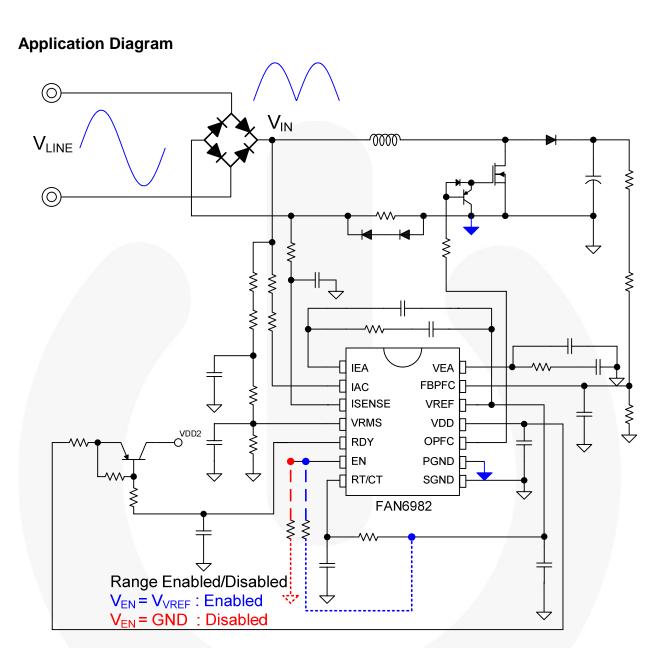


Figure 1. Typical Application

Block Diagram

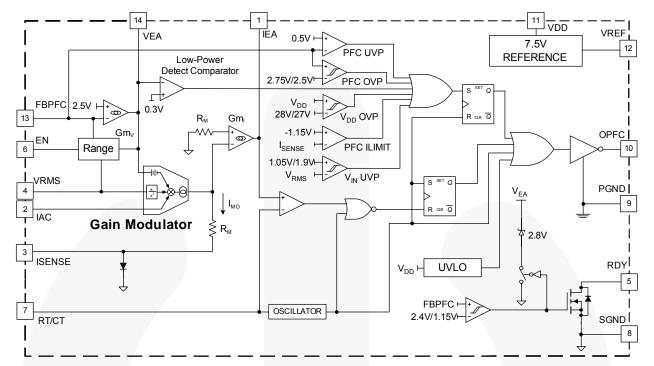


Figure 2. Functional Block Diagram

Marking Information

- F Fairchild Logo
- Z Plant Code
- X 1-Digit Year Code
- Y 1-Digit Week Code
- TT 2-Digit Die-Run Code
- T Package Type (M: SOP)
- P Y: Green Package
- M Manufacture Flow Code

Figure 3. Top Mark

Pin Configuration

Figure 4. Pin Configuration

Pin Definitions

Pin #	Name	Description
1	IEA	Output of Current Amplifier . This is the output of the PFC current amplifier. The signal from this pin is compared with sawtooth and determines the pulsewidth for PFC gate drive.
2	IAC	Input AC Current. For normal operation, this input is used to provide current reference for the multiplier. The suggested maximum I_{AC} is $100\mu A$.
3	ISENSE	Current Sense. The non-inverting input of the PFC current amplifier and the output of multiplier and PFC I _{LIMIT} comparator.
4	VRMS	Line-Voltage Detection. The pin is used for PFC multiplier.
5	RDY	Ready Signal . This pin controls the power-on sequence. Once the FAN6982 is turned on and the FBPFC voltage exceeds in 2.4V, the RDY pin pulls LOW impedance. If the FBPFC voltage is lower than 1.15V, the RDY pin pulls HIGH impedance.
6	EN	Enable Range Function . The range function is enabled when EN is connected to V_{REF} . The range function is disabled when EN is connected to GND.
7	RT/CT	Oscillator RC Timing Connection. Oscillator timing node; timing set by RT and CT.
8	SGND	Signal Ground.
9	PGND	Power Ground.
10	OPFC	Gate Drive. The totem-pole output drive for PFC MOSFET. This pin is internally clamped under 15V to protect the MOSFET.
11	VDD	Power Supply . The threshold voltages for startup and turn-off are 11V and 9.3V, respectively. The operating current is lower than 10mA.
12	VREF	Reference Voltage. Buffered output for the internal 7.5V reference.
13	FBPFC	Voltage Feedback Input. The feedback input for PFC voltage loop. The inverting input of PFC error amplifier. This pin is connected to the PFC output through a divider network.
14	VEA	Output of Voltage Amplifier. The error-amplifier output for PFC voltage feedback loop. A compensation network is connected between this pin and ground.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Paramete	Min.	Max.	Unit	
V_{DD}	DC Supply Voltage			30	V
V _H	OPFC, RDY, EN, VREF		-0.3	30.0	V
V _L	IAC, VRMS, RT/CT, FBPFC, VEA		-0.3	7.0	V
V _{IEA}	IEA		0	V _{VREF} +0.3	V
V _N	ISENSE		-5.0	0.7	V
I _{AC}	Input AC Current			1	mA
I _{REF}	VREF Output Current		5	mA	
I _{PFC-OUT}	Peak PFC OUT Current, Source or S		0.5	Α	
P _D	Power Dissipation, T _A < 50°C		800	mW	
R _{⊙ j-a}	Thermal Resistance (Junction-to-Air)		104.10	°C/W	
R _{⊝ j-c}	Thermal Resistance (Junction-to-Case)			40.61	°C/W
T_J	Operating Junction Temperature		-40	+125	°C
T _{STG}	Storage Temperature Range		-55	+150	°C
TL	Lead Temperature (Soldering)		\	+260	°C
ECD		Human Body Model, JESD22-A114		4.5	12/
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101		1.0	kV

Notes:

- 1. All voltage values, except differential voltage, are given with respect to the GND pin.
- 2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Max.	Unit	
T _A	I. I ()nerating Ambient Lemperature		+105	°C	

Electrical Characteristics

Unless otherwise noted; V_{DD}=15V, T_A= 25°C, T_A=T_J, R_T=27k Ω , and C_T=1000pF.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{DD} Section				•		
$V_{\text{DD-OP}}$	Continuously Operating Voltage				22	V
I _{DD ST}	Startup Current	V _{DD} =V _{TH-ON} -0.1V; OPFC Open		30	80	μA
I _{DD-OP}	Operating Current	V _{DD} =13V; OPFC Open	2.0	2.3	3.0	mA
$V_{\text{TH-ON}}$	Turn-on Threshold Voltage		10	11	12	V
$ riangle V_{TH}$	Hysteresis		1.35		1.90	V
$V_{\text{DD-OVP}}$	V _{DD} OVP		27	28	29	V
$\triangle V_{\text{DD-OVP}}$	V _{DD} OVP Hysteresis			1		V
Oscillator						
f _{OSC}	PFC Frequency	R_T =27k Ω , C_T =1000pF	60	64	67	kHz
$f_{DV}^{(3)}$	Voltage Stability	$11V \le V_{DD} \le 22V$			2	%
f _{DT} ⁽³⁾	Temperature Stability	-40°C ~ +105°C	V		2	%
f_{TV}	Total Variation	Line, Temperature	58		70	kHz
f_{RV}	Ramp Voltage	Valley-to-Peak		2.8		V
I _{OSC-DIS}	Discharge Current	V _{RAMP} =0V, V _{RT/CT} =2.5V	6.5		15.0	mA
f _{RANGE}	Frequency Range		50		75	kHz
t _{PFC-DEAD}	PFC Dead Time	R_T =27k Ω , C_T =1000pF	400	600	800	ns
V _{REF}						
V_{VREF}	Reference Voltage	I _{REF} =0mA, C _{REF} =0.1µF	7.4	7.5	7.6	V
$\triangle V_{VREF1}$	Load Regulation of Reference Voltage	C_{REF} =0.1 μ F, I_{REF} =0 m A to 3.5 m A V_{VDD} =14 V , Rise/Fall Time > 20 μ s		30	50	mV
$\triangle V_{VREF2}$	Line Regulation of Reference Voltage	C _{REF} =0.1µF, V _{VDD} =11V to 22V			25	mV
$\triangle V_{VREF-DT}$	Temperature Stability ⁽³⁾	-40°C ~ +105°C		0.4	0.5	%
$\triangle V_{VREF-TV}$	Total Variation ⁽³⁾	Line, Load, Temperature	7.35		7.65	V
$\triangle V_{VREF-LS}$	Long-Term Stability ⁽³⁾	T _J =125°C, 0 ~ 1000HRs	5		25	mV
I _{REF-MAX}	Maximum Current	V _{VREF} > 7.35V	5		/-	mA
Brownout				ı		
V _{RMS-UVL}	V _{RMS} Threshold Low	When V _{RMS} =1.05V at 75 V _{RMS}	1.00	1.05	1.10	V
V _{RMS-UVH}	V _{RMS} Threshold High	When V _{RMS} =1.9V at 85 • 1.414	1.85	1.90	1.95	V
$\triangle V_{\text{RMS-UVP}}$	Hysteresis		750	850	950	mV
t _{UVP}	Under-Voltage Protection Debounce Time		340	410	480	ms
RDY Section	1					
V _{FBPFC-RD}	FBPFC Voltage Level to Pull Low Impedance with RDY Pin		2.3	2.4	2.5	V
$\triangle V_{\text{FBPFC-RD}}$	Hysteresis		1.15	1.25	1.35	V
I _{RDY-LEK}	Leakage Current of RDY High Impedance	V _{FBPFC} <2.4V			500	nA
V_{RDY-L}	RDY Low Voltage	I _{SINK} =2mA			0.5	V

Continued on the following page...

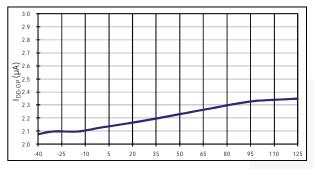
Electrical Characteristics (Continued)

Unless otherwise noted; V_{DD} =15V, T_A = 25°C, T_A = T_J , R_T =27k Ω , and C_T =1000pF.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Voltage Erro	r Amplifier		1	u e	ı	l
V_{REF}	Reference Voltage		2.45	2.50	2.55	V
A _V	Open-Loop Gain ⁽³⁾	At T _A =25°C	35	42		dB
Gm_V	Transconductance	V _{NONINV} =V _{INV} , V _{VEA} =3.75V at T _A =25°C	50	70	90	µmho
I _{FBPFC-L}	Maximum Source Current	V _{FBPFC} =2V, V _{VEA} =1.5V	40	50		μA
I _{FBPFC-H}	Maximum Sink Current	V _{FBPFC} =3V, V _{VEA} =6V		-50	-40	μA
I _{BS}	Input Bias Current		-1		1	μA
V_{VEA-H}	Output High Voltage on V _{VEA}		5.8	6.0		V
V_{VEA-L}	Output Low Voltage on V _{VEA}			0.1	0.4	V
Current Erro	r Amplifier					
V _{ISENSE}	Input Voltage Range		-1.5		0.7	V
Aı	Open-Loop Gain ⁽³⁾	At T _A =25°C	40	50		dB
Gm _I	Transconductance	V _{NONINV} =V _{INV} , V _{IEA} =3.75V	75	88	100	μmho
V _{OFFSET}	Input Offset Voltage	V _{VEA} =0V, I _{AC} Open	-10		10	mV
V _{IEA-H}	Output High Voltage		6.8	7.4	8.0	V
V_{IEA-L}	Output Low Voltage			0.1	0.4	V
IL	Source Current	V _{ISENSE} = -0.6V, V _{IEA} =1.5V	35	50		μΑ
lμ	Sink Current	V _{ISENSE} = +0.6V, V _{IEA} =4.0V		-50	-35	μΑ
PFC OVP Co	mparator					
$V_{FBPFC-OVP}$	Over Voltage Protection		2.70	2.75	2.80	V
$\triangle V_{FBPFC-OVP}$	PFC OVP Hysteresis		200	250	300	mV
Low-Power I	Detect Comparator				•	
V _{VEA-OFF}	VEA Voltage Off OPFC		0.2	0.3	0.4	V
PFC Soft-Sta	nrt	1		l.	ı	
V _{VEA_CLAMP}	PFC Soft-Start	V _{FBPFC} < 2.4V	2.2	2.8	3.3	V
EN Section			/			
V _{EN-H}	High Voltage Level of V _{EN}	V _{EN} =V _{VREF}	7.4	7.5	7.6	V
V _{EN-L}	Low Voltage Level of V _{EN}	V _{EN} =GND		0		V
Range				l.		I
V _{VRMS-L}	RMS AC Voltage Low	When V _{VRMS} =1.95V at 132V _{RMS}	1.90	1.95	20.00	V
V _{VRMS-H}	RMS AC Voltage High	When V _{VRMS} =2.45V at 150 V _{RMS}	2.40	2.45	2.50	V
V _{VEA-L}	VEA Low	When V _{VEA} =1.95V at 30% Loading	1.90	1.95	2.00	V
V _{VEA-H}	VEA High	When V _{VEA} =2.45V at 40% Loading	2.40	2.45	2.50	V
I _{TC}	Source Current from FBPFC		18	20	22	μA

Continued on the following page...

Electrical Characteristics (Continued)


Unless otherwise noted; V_{DD} =15V, T_A = 25°C, T_A = T_J , R_T =27k Ω , and C_T =1000pF.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Gain Modula	ator					I.
I _{AC}	Input for AC Current	Multiplier Linear Range	0		100	μA
		I_{IAC} =17.67 μ A, V_{VRMS} =1.080 V_{FBPFC} =2.25 V , at T_A =25 $^{\circ}$ C	7.500	9.000	10.500	
		I_{IAC} =20 μ A, V_{VRMS} =1.224 V_{VFBPFC} =2.25 V , at T_A =25 $^{\circ}$ C	6.367	7.004	7.704	
GAIN	Gain Modulator ⁽³⁾⁽⁴⁾	I_{IAC} =25.69 μ A, V_{VRMS} =1.585 V V_{FBPFC} =2.25 V , at T_A =25 $^{\circ}$ C	3.801	4.182	4.600	
		I_{IAC} =51.62 μ A, V_{VRM} S=3.169 V_{VBPFC} =2.25 V , at T_A =25 $^{\circ}$ C	0.950	1.045	1.149	
		I_{IAC} =62.23 μ A, V_{VRMS} =3.803 V_{VBPFC} =2.25 V , at T_A =25 $^{\circ}$ C	0.660	0.726	0.798	
BW	Bandwidth	I _{IAC} =40μA		2		kHz
$V_{O(GM)}$	Output Voltage=5.7kΩ × (I _{SENSE} -I _{OFFSET})	I_{AC} =20 μ A, V_{RMS} =1.224 V V_{FBPFC} =2.25 V , at T_{A} =25 $^{\circ}$ C	0.710	0.798	0.885	V
PFC I _{LIMIT} Co	mparator					
V _{PFC-ILIMIT}	Peak Current Limit Threshold Voltage Cycle-by-Cycle Limit		-1.25	-1.15	-1.05	V
$\triangle V_{pk}$	PFC I _{LIMIT} -Gain Modulator Output	I _{IAC} =17.67μA, V _{VRMS} =1.08V V _{FBPFC} =2.25V, at T _A =25°C	200			mV
PFC Output	Driver				•	
$V_{\text{GATE-CLAMP}}$	Gate Output Clamping Voltage	V _{DD} =22V	13	15	17	V
V_{GATE-L}	Gate Low Voltage	V _{DD} =15V; I _O =100mA			1.5	V
V _{GATE-H}	Gate High Voltage	V _{DD} =13V; I _O =100mA	8			V
t _R	Gate Rising Time	V _{DD} =15V; C _L =4.7nF; O/P= 2V to 9V	40	70	120	ns
t _F	Gate Falling Time	V _{DD} =15V; C _L =4.7nF; O/P= 9V to 2V	40	60	110	ns
D _{PFC-MAX}	Maximum Duty Cycle	V _{IEA} <1.2V	94	97		%
D _{PFC-MIN}	Minimum Duty Cycle	V _{IEA} >4.5V			0	%
Tri-Fault Det	tect					
t _{FBPFC_OPEN}	Time to FBPFC Open	V _{FBPFC} =V _{FBPFC-OVP} to FBPFC OPEN, 470pF from FBPFC to GND		2	4	ms
$V_{PFC-UVP}$	PFC Feedback Under- Voltage Protection		0.4	0.5	0.6	V

Notes:

- This parameter, although guaranteed by design, is not 100% production tested.
 This gain is the maximum gain of modulation with a given V_{RMS} voltage when V_{EA} is saturated to high.

Typical Performance Characteristics

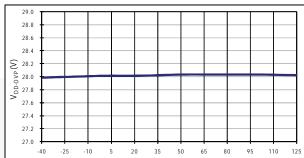
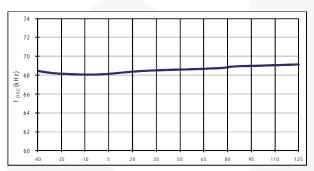



Figure 5. I_{DD-OP} vs. Temperature

Figure 6. V_{DD-OVP} vs. Temperature

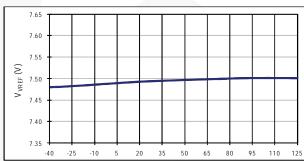
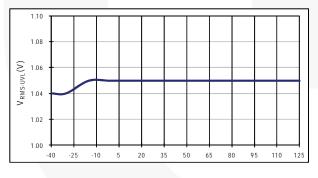



Figure 7. fosc vs. Temperature

Figure 8. V_{VREF} vs. Temperature

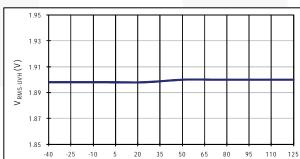
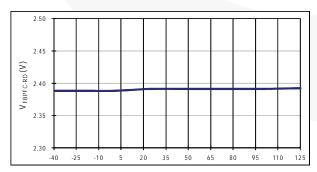



Figure 9. V_{RMS-UVL} vs. Temperature

Figure 10. V_{RMS-UVH} vs. Temperature

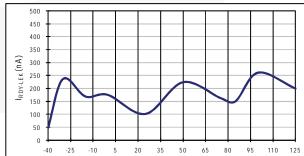
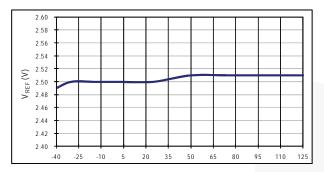



Figure 11. V_{FBPFC-RD} vs. Temperature

Figure 12. I_{RDY-LEK} vs. Temperature

Typical Performance Characteristics (Continued)

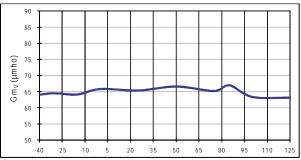
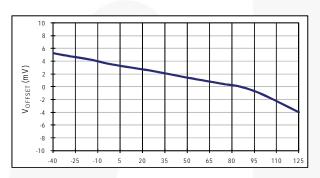



Figure 13. V_{REF} vs. Temperature

Figure 14. Gm_V vs. Temperature

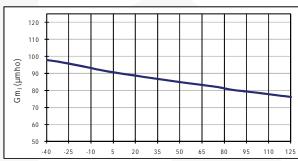
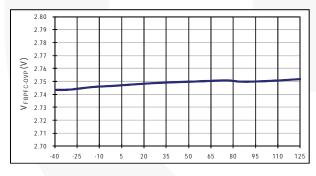



Figure 15. V_{OFFSET} vs. Temperature

Figure 16. Gm_I vs. Temperature

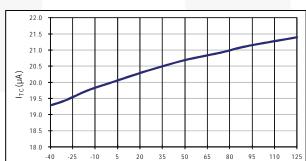
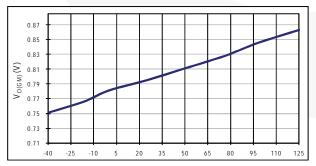



Figure 17. V_{FBPFC-OVP} vs. Temperature

Figure 18. I_{TC} vs. Temperature

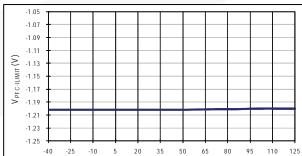
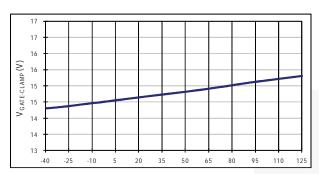



Figure 19. V_{O(GM)} vs. Temperature

Figure 20. V_{PFC-ILIMIT} vs. Temperature

Typical Performance Characteristics (Continued)

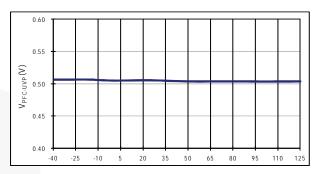


Figure 21. $V_{GATE-CLAMP}$ vs. Temperature

Figure 22. $V_{\text{PFC-UVP}}$ vs. Temperature

Functional Description

Oscillator

The internal oscillator frequency of FAN6982 is determined by the timing resistor and capacitor on the RT/CT pin, but note that the optimum operation for FAN6982 is between 50 and 75kHz. The frequency of the internal oscillator is given by:

$$f_{OSC} = \frac{1}{0.56 \cdot R_T \cdot C_T + 360C_T} \tag{1}$$

The dead time for the PFC gate drive signal is determined by

$$t_{DEAD} = 360C_T \tag{2}$$

The dead time should be smaller than 2% of switching period to minimize line current distortion around line zero crossing.

Gain Modulator

Gain modulator is the key block for PFC stage because it provides the reference to the current control error amplifier for the input current shaping, as shown in Figure 23. The output current of gain modulator is a function of V_{EA} , I_{AC} and V_{RMS} . The gain of the gain modulator is given as a ratio between I_{MO} and I_{AC} with a given V_{RMS} when V_{EA} is saturated to high. The gain is inversely proportional to $V_{\text{RMS}}^{\,\,2}$, as shown in Figure 24, to implement line feed-forward. This automatically adjusts the reference of current control error amplifier according to the line voltage such that the input power of PFC converter is not changed with line voltage, as shown in, Figure 25.

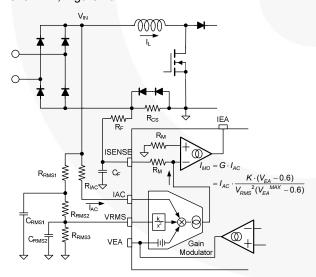


Figure 23. Gain Modulator Block

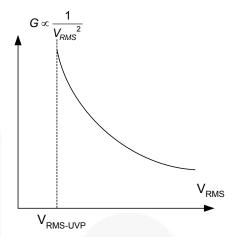


Figure 24. Modulation Gain Characteristics

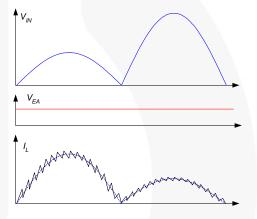


Figure 25. Line Feed-Forward Operation

To sense the RMS value of the line voltage, an averaging circuit with two poles is typically employed as shown in Figure 23. Notice that the input voltage of PFC is clamped at the peak of the line voltage once PFC stops switching since the junction capacitance of bridge diode is not discharged, as shown in Figure 26.

Therefore, the voltage divider for V_{RMS} should be designed considering the brownout protection trip point and minimum operation line voltage.

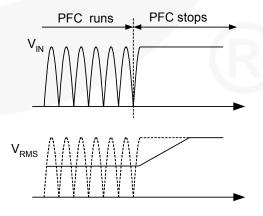


Figure 26. V_{RMS} According to the PFC Operation

The rectified sinusoidal signal is obtained by the current flowing into the IAC pin. The resistor R_{IAC} should be large enough to prevent saturation of the gain modulator as:

$$\frac{\sqrt{2}V_{LINE.BO}}{R_{IAC}} \cdot G^{MAX} < 159 \mu A \tag{3}$$

where $V_{\text{LINE,BO}}$ is the line voltage that trips brownout protection, G^{MAX} is the maximum modulator gain when V_{RMS} is 1.08V, and 159 μ A is the maximum output current of the gain modulator.

Current-Control of Boost Stage

As shown in Figure 27 the FAN6982 employs two control loops for power factor correction, a current-control loop and a voltage-control loop. The current-control loop shapes inductor current, as shown in Figure 28, based on the reference signal obtained at IAC pin as:

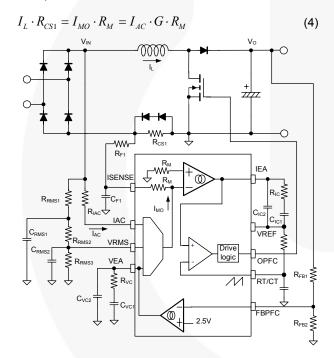


Figure 27. Gain Modulation Block

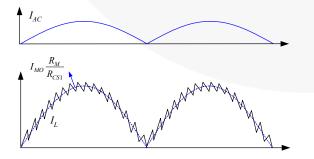


Figure 28. Inductor Current Shaping

The current-control feedback loop also has a pulse-bypulse current limit comparator that forces the PFC switch to turn off if the ISENSE pin voltage drops below -1.15V until the next switching cycle.

Voltage-Control of Boost Stage

The voltage-control loop regulates PFC output voltage using internal error amplifier such that the FBPFC voltage is same as internal reference of 2.5V.

To improve system efficiency at low AC line voltage and light-load condition, FAN6982 provides adjustable PFC output voltage. As shown in Figure 29, FAN6982 monitors V_{EA} and V_{RMS} to adjust the PFC output voltage. When V_{EA} and V_{RMS} are lower than thresholds, internal current source of $20\mu A$ is enabled that flows through R_{FB2} , increasing the voltage of the FBPFC pin. This causes the PFC output voltage to reduce when $20\mu A$ is enabled as:

$$V_{OPFC2} = \frac{R_{FB1} + R_{FB2}}{R_{FB2}} \times (2.5 - 20 \mu A \times R_{FB2})$$
 (5)

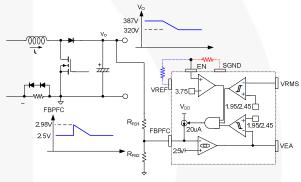


Figure 29. Block of Adjustable PFC Output

Brownout Protection

FAN6982 has a built-in internal brownout protection comparator monitoring the voltage of the VRMS pin. Once the VRMS pin voltage is lower than 1.05V, the PFC stage is shutdown to protect the system from over current. FAN6982 starts up the boost stage once the VRMS voltage increases above 1.9V.

TriFault Detect™

To improve power supply reliability, reduce system component count, and simplify compliance to UL 1950 safety standards; the FAN6982 includes TriFault Detect technology. This feature monitors FBPFC for certain PFC fault conditions.

In the case of a feedback path failure, the output of the PFC could exceed operating limits. Should FBPFC go too low, or too high, or open; TriFault Detect senses the error and terminates the PFC output drive.

TriFault detect is an entirely internal circuit. It requires no external components to serve its protective function.

PFC Soft-Start Function

The FAN6982 PFC soft-start function is shown in Figure 30. When bulk voltage is under the 96% of setting voltage; V_{EA} clamps to 2.8V, the output current of multiplier cuts half, the rectifier line current is limited by current loop, and PFC output rise time increases.

When bulk voltage is over 96%, the clamping function is disabled, and the bulk voltage can be regulated by voltage error amplifier.

There have two advantages with PFC soft-start: one is the MOSFET experience of current is reduced, which can obtain more de-rating with MOSFET current level. The other one is to reduce the overshoot of PFC bulk voltage at the rising time because the charge current becomes small, the bulk voltage can not exceed to setting voltage easily.

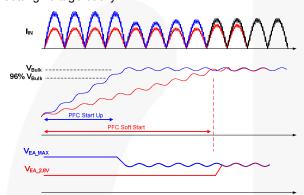


Figure 30. PFC Soft-Start

RDY Function

The FAN6982 RDY function, is shown in Figure 31, is controlled by voltage of FBPFC. If the voltage of FBPFC is over than 96% of 2.5V, the RDY pin is connected to SGND. If the FBPFC is under the 46% of 2.5V, the RDY appears open-drain situation. Usually the capacitor is parallel with the RDY pin to prevent the layout noise.

The PNP transistor can control the AHB LLC or dualforward controller on the same side or the "op-to" to control the LLC controller on the other side.

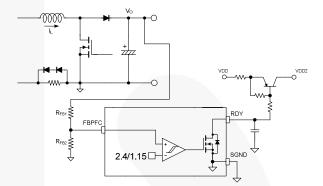
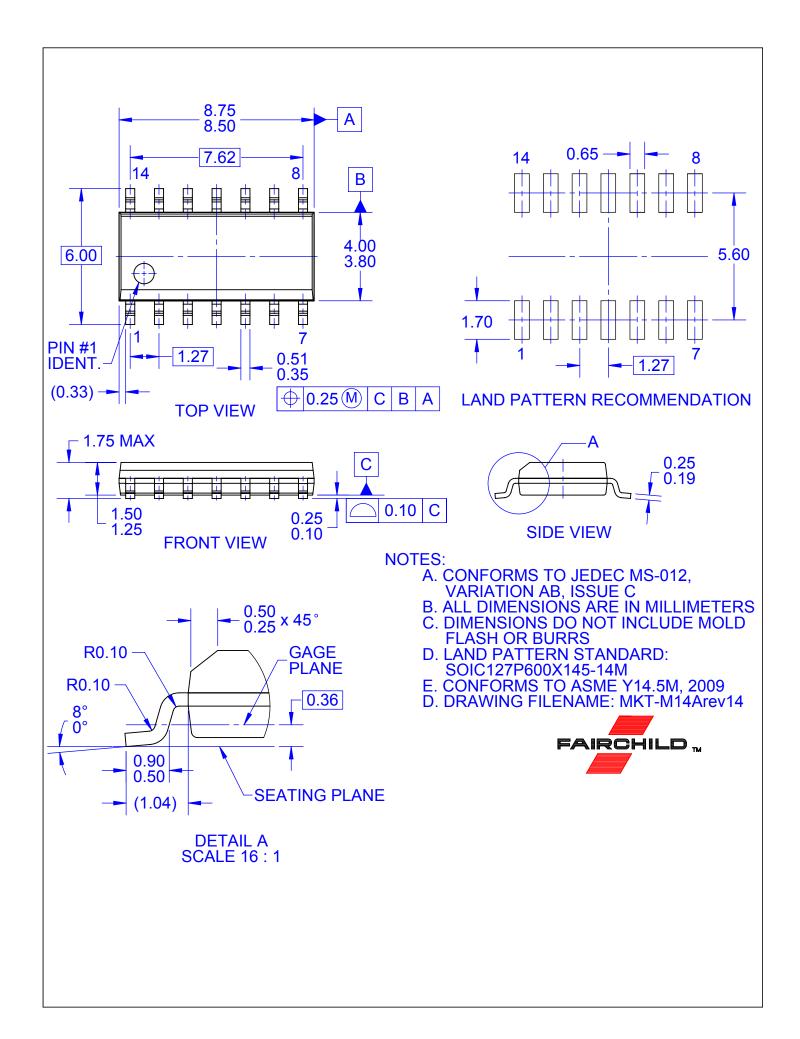



Figure 31. RDY Application Circuit

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative