FSL117MRIN Evaluation Board User's Manual

GENERAL BOARD DESCRIPTION

FSL117MRIN Power Switch which is utilized in the evaluation board can be applied for home appliance applications. FSL117MRIN is an integrated Pulse–Width Modulation (PWM) controller and SENSEFET[®] specifically designed for high performance off–line SMPS. In order to minimize the power consumption in stand–by mode, the start up current source supplied by JFET is turned off during normal operation and the burst operation. Furthermore, A soft burst operation reduces audible noise during stand–by mode.

The board is designed to minimize the power consumption in stand-by mode and to have high efficiency in normal mode. The power stage has single output. It is a $12 V_{OUT}$.

Features of FSL117MRIN

- Advanced Burst Mode Operation for Low Stand-by Power
- Random Frequency Fluctuation for Low EMI
- Pulse-by-Pulse Current Limit
- Various Protection Functions: Overload Protection (OLP), Over-Voltage Protection (OVP), Abnormal Over-Current Protection (AOCP), Internal Thermal Shutdown (TSD) with Hysteresis, Output-Short Protection (OSP), Line Over-Voltage Protection (LOVP), and Under-Voltage Lock Out (UVLO) with Hysteresis
- Auto-Restart Mode
- Internal Start-up Circuit
- Internal High–Voltage SENSEFET (700 V)
- Built-in Soft Start: 15 ms

ON Semiconductor®

www.onsemi.com

EVAL BOARD USER'S MANUAL

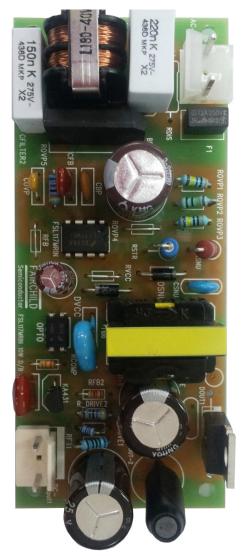


Figure 1. FSL117MRIN Evaluation Board

Block Diagram of FSL117MRIN

Figure 2. Block Diagram of FSL117MRIN

Input-Output Specifications of the Evaluation Board

Table 1. INPUT-OUTPUT SPECIFICATIONS

Description	Voltage	Current	Max Power
Input Voltage (V _{IN})	85~265 Vac 50~60 Hz	-	-
Output Voltage 1 (V _{OUT1})	12 Vdc	0.83 A	9.96 W (100%)
Total Output Power	-	-	9.96 W (100%)

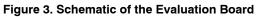

Summary of Performance

Table 2. SUMMARY OF PERFORMANCE

Symbol	Description	Value	Comments
P _{IN} ,@0.000W P _{IN} ,@0.120W P _{IN} ,@0.240W P _{IN} ,@0.360W P _{IN} ,@0.480W	Stand-by Power (without discharge resistor / FSL117MRIN)	0.053 W 0.231 W 0.397 W 0.540 W 0.701 W	230 Vac input, P _{IN} was averaged for 10 minutes
η85Vac η115Vac η230Vac η264Vac	Efficiency (η) P _{OUT} = 23.0 W	Avg. 82.87% Avg. 84.38% Avg. 84.25% Avg. 83.53%	Average of 25, 50, 75 and 100% load (open frame, room temperature / still air)
T _{PKG,85} Vac T _{PKG,115} Vac T _{PKG,230} Vac T _{PKG,264} Vac	Temperature (FSD156MRBN)	69.0°C 57.9°C 52.3°C 54.7°C	Around Drain PIN of package surface of the IC @ full load (enclosed rectangular box)

Schematic of the Evaluation Board

Photographs of Evaluation Board

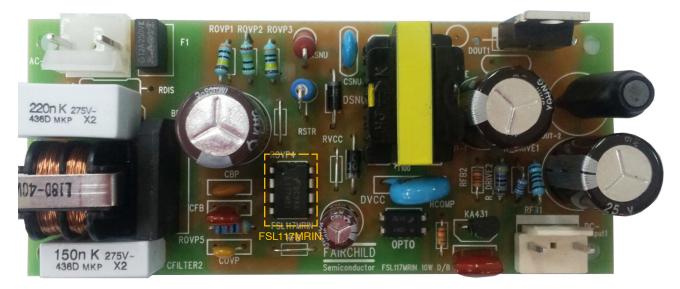


Figure 4. Top Side Photograph of the Evaluation Board

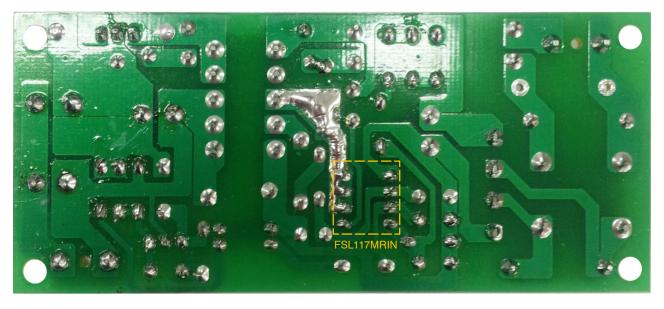


Figure 5. Bottom Side Photograph of the Evaluation Board

Bill of Materials

The selected components for the evaluation board are shown in Table 3.

Table 3. BILL OF MATERIALS FOR EVALUATION BOARD

Part #	Value	Note	Part #	Value	Note
Fuse				Capacitor	
FUSE	250 V 2 A		CFILTER1	220 nF / 275 V	Box (Pilkor)
	Resistor		CFILTER2	150 nF / 275 V	Box (Pilkor)
RDIS	open		CBULK	22 μF / 400 V	Electrolytic (SamYoung)
ROVP1	3 MΩ	1%, 1/4 W	CSNUBBER	1 nF / 1 kV	film (sewha)
ROVP2	3 MΩ	1%, 1/4 W	CVCC	47 μF / 50 V	Electrolytic (KMG)
ROVP3	3 MΩ	1%, 1/4 W	CFB	12 nF / 100 V	film (sewha)
ROVP4	0 Ω	Jumper	CBP	100 nF	film (sewha)
ROVP5	43 kΩ	1%, 1/4 W	COVP	10 nF	film (sewha)
RSTR	68 kΩ	1 W	COUT1	1000 μF / 25 V	Electrolytic (SamYoung)
RSNUBBER	75 kΩ	1 W	COUT2	1000 μF / 25 V	Electrolytic (SamYoung)
RVCC	0 Ω	Jumper	CDIODE	open	
RFB	0 Ω	Jumper	CCOMP	47 nF	film (sewha)
RDIODE	open		YCAP	2.2 nF	film (sewha)
RFB1	750 Ω	1/4 W			
RFB2	1.2 kΩ	1/4 W		Inductor	
RCOMP	24 kΩ	1/4 W	LOUT	1 μH	
RDIVIDE1	18 kΩ	1%, 1/4 W	LF	35 mH	
RDIVIDE2	4 kΩ	1%, 1/4 W		Transformer	
<u> </u>	IC		T101	1 mH	EE2219
SMPS	FSL117MRIN	ON Semiconductor			
SHUNT	KA431LZ	ON Semiconductor			
OPTO	FOD817B	ON Semiconductor			
	Diode				
DSNUBBER	UF4004	Vishay			
DVCC	UF4004	Vishay			
DOUT	MBR20150CT	ON Semiconductor			
BD	G2SBA60	Vishay			

Transformer Specification

- Core: EE2219 (Ae = 40.1 mm²)
- Bobbin: EE2219

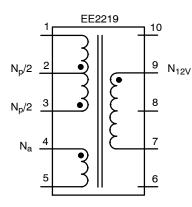


Figure 6. Transformer Specification

Table 4. WINDING SPECIFICATION

						Barrier Tape	
	Pin(S → F)	Wire	Turns	Winding Method	ТОР	вот	Ts
N _p /2 (BOT)	$3 \rightarrow 2$	0.25φ x 1	34	Solenoid winding	-	-	
Insulation: Polyester Tape t = 0.025 mm, 2 Layers							
N _{12V}	$9 \rightarrow 7$	0.4φ x 2 (TIW)	12	Solenoid winding	-	-	
Insulation: Polyester Tape t = 0.025 mm, 2 Layers							
N _a	$4 \rightarrow 5$	0.2φ x 1	14	Solenoid winding		-	
Insulation: Polyeste	er Tape t = 0.025 mm	, 2 Layers					
N _p /2 (TOP)	$2 \rightarrow 1$	0.25φ x 1	33	Solenoid winding	-	-	
Insulation: Polyeste	er Tape t = 0.025 mm	, 2 Layers	-	-			

Electrical Characteristics

Table 5. ELECTRICAL CHARACTERISTICS

	Pin	Spec	Remark
Inductance	$3 \rightarrow 1$	1.0 mH ±6%	67 kHz, 1 V

PERFORMANCE DATA

Stand-by Power without AC Discharge Resistor

Table 6.

Test Condition	12 V _{OUT}
Load	0.000 A~0.040 A
Output Power	0.000 W~0.480 W

Table 7. STAND-BY POWER

	FSL117MRIN			Pin	(W)	
Vo (V)	lo (A)	Po (W)	85 Vac	115 Vac	230 Vac	265 Vac
12	0.000	0.000	0.037	0.039	0.053	0.059
12	0.005	0.060	0.141	0.143	0.164	0.172
12	0.010	0.120	0.205	0.207	0.231	0.239
12	0.015	0.180	0.284	0.287	0.316	0.326
12	0.020	0.240	0.362	0.365	0.397	0.410
12	0.025	0.300	0.438	0.443	0.477	0.491
12	0.030	0.360	0.497	0.503	0.540	0.555
12	0.035	0.420	0.575	0.581	0.622	0.638
12	0.040	0.480	0.650	0.657	0.701	0.719

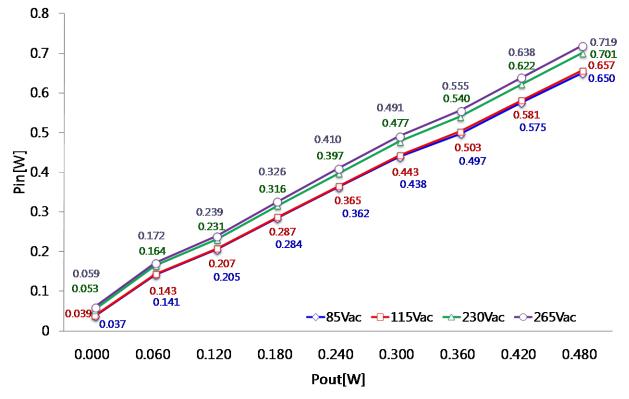
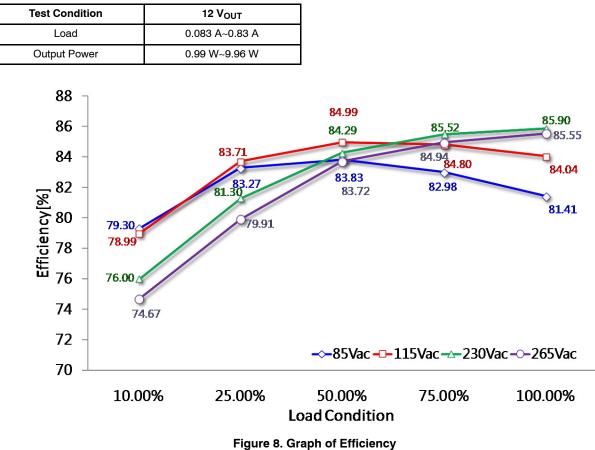



Figure 7. Graph of Standby Power

NOTE: Test results (PIN) were averaged for 10 minutes at each load

Efficiency

Та	8.

	12	12.0 V				
Vin	lout [A]	Vout [V]	Pout [W]	Pin [W]	Efficiency [%]	Load
85 Vac	0.083	12.010	1.00	1.26	79.30	10.00%
	0.209	12.010	2.51	3.01	83.27	25.00%
	0.414	12.000	4.97	5.93	83.83	50.00%
	0.620	12.000	7.44	8.97	82.98	75.00%
	0.827	11.990	9.92	12.18	81.41	100.00%
	Ave	erage (25, 50, 75, 10	00%)		82.87	
115 Vac	0.083	12.010	1.00	1.26	78.99	10.00%
	0.209	12.010	2.51	3.00	83.71	25.00%
	0.414	12.000	4.97	5.85	84.99	50.00%
	0.620	12.000	7.44	8.77	84.80	75.00%
	0.827	11.990	9.92	11.80	84.04	100.00%
	Ave	erage (25, 50, 75, 10	00%)	•	84.38	
230 Vac	0.083	12.010	1.00	1.31	76.00	10.00%
	0.209	12.010	2.51	3.09	81.30	25.00%
	0.414	12.000	4.97	5.89	84.29	50.00%
	0.620	12.000	7.44	8.70	85.52	75.00%
	0.827	11.990	9.92	11.54	85.90	100.00%
	Ave	erage (25, 50, 75, 10	00%)		84.25	
265 Vac	0.083	12.010	1.00	1.34	74.67	10.00%
	0.209	12.010	2.51	3.14	79.91	25.00%
	0.414	12.000	4.97	5.93	83.72	50.00%
	0.620	11.990	7.43	8.75	84.94	75.00%
	0.827	11.990	9.92	11.59	85.55	100.00%
	Ave	erage (25, 50, 75, 10	00%)	•	83.53	

Table 9. EFFICIENCY OF THE EVALUATION BOARD

EMI Test Result

EMI Test Result at $V_{IN} = 220$ Vac

Table 10.

Test Condition	12 V _{OUT}
Load	0.8 A
Output Power	9.6 W

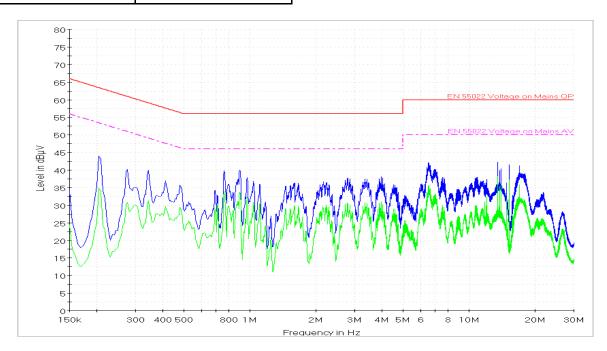
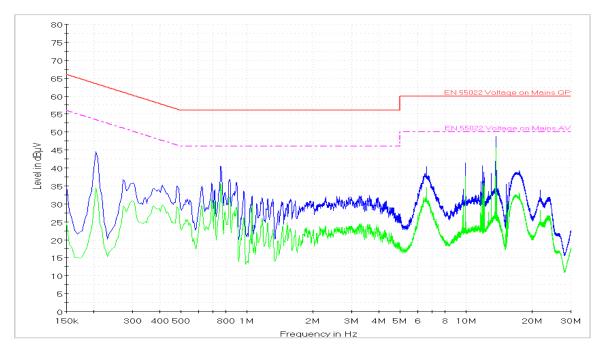
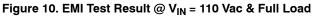




Figure 9. EMI Test Result @ V_{IN} = 220 Vac & Full Load

EMI Test Result at $V_{IN} = 110 Vac$

Thermal Characteristics

Test Condition	12 V _{OUT}	
Load	0.83 A	
Output Power	9.96 W	

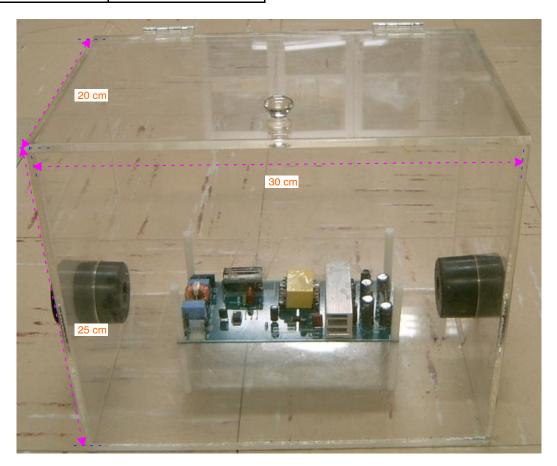


Figure 11. Rectangular Box

NOTE: Temperature of each component was measured in the rectangular box (Fig. 11)

Temperature Measurement

Input Voltage	IC	Transformer	12 V Diode
85 Vac	69.0°C	44.5°C	55.1°C
115 Vac	57.9°C	44.7°C	55.4°C
230 Vac	52.3°C	46.2°C	55.7°C
265 Vac	54.7°C	47.1°C	55.5°C

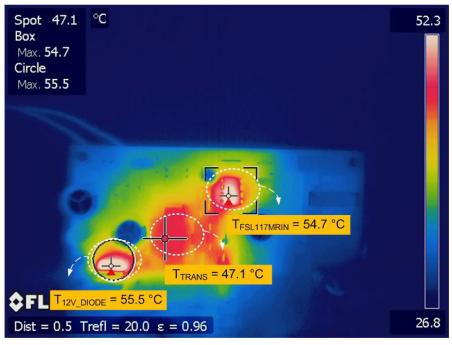


Figure 12. Thermal Cam @ V_{IN} = 265 Vac & Full Load

Thermal Cam at V_{IN} = 230 Vac, Full Load

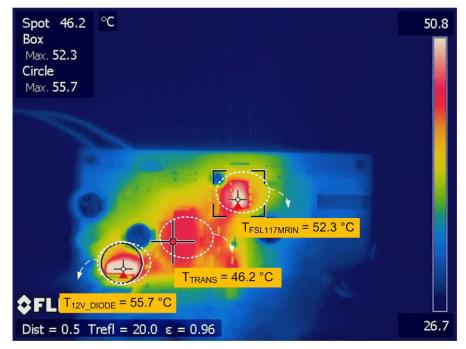


Figure 13. Thermal Cam @ $\rm V_{IN}$ = 230 Vac & Full Load

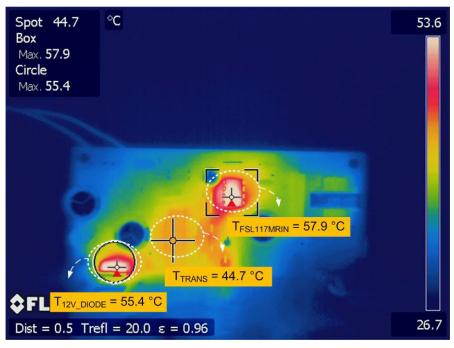


Figure 14. Thermal Cam @ V_{IN} = 115 Vac & Full Load

Thermal Cam at $V_{IN} = 85$ Vac, Full Load

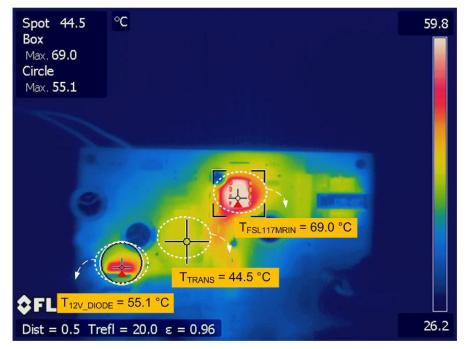


Figure 15. Thermal Cam @ V_{IN} = 85 Vac & Full Load

WAVEFORMS

Soft-Start

Table 13.

Test Condition	12 V _{OUT}
Load	0.83 A
Output Power	9.96 W

Soft-Start at V_{IN} = 85 Vac, Full Load

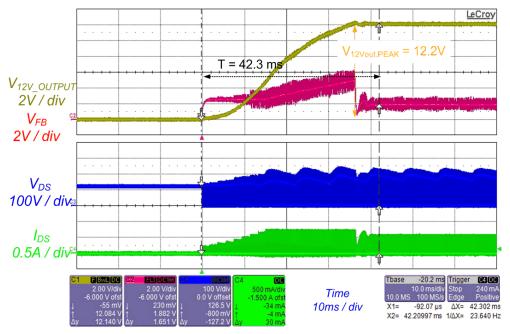
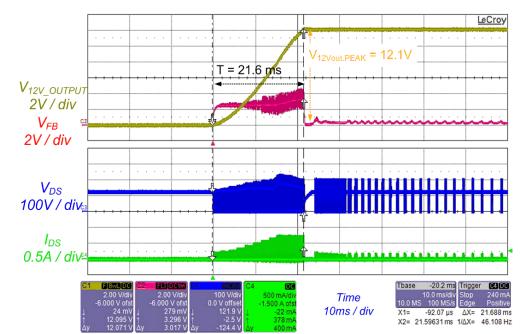



Figure 16. Soft-Start Waveforms @ V_{IN} = 85 Vac & Full Load

Soft–Start at V_{IN} = 90 Vac, No Load

Soft-Start at V_{IN} = 265 Vac, Full Load

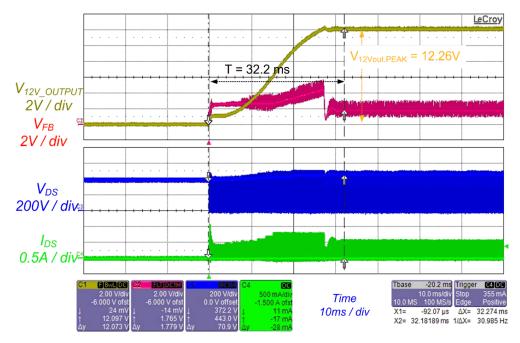


Figure 18. Soft-Start Waveforms @ VIN = 265 Vac & Full Load

Soft-Start at V_{IN} = 265 Vac, No Load

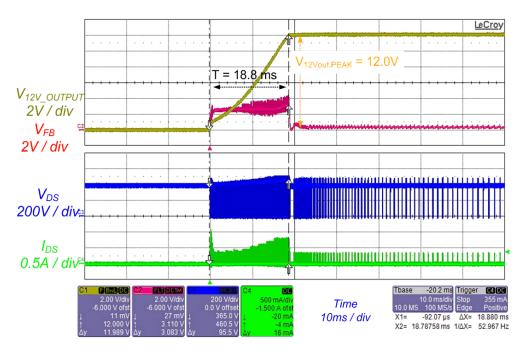


Figure 19. Soft-Start Waveforms @ VIN = 265 Vac & No Load

Start-up

Table 14.

Test Condition	12 V _{OUT}
Load	0.83 A
Output Power	9.96 W

Start-up at V_{IN} = 85 Vac, Full Load

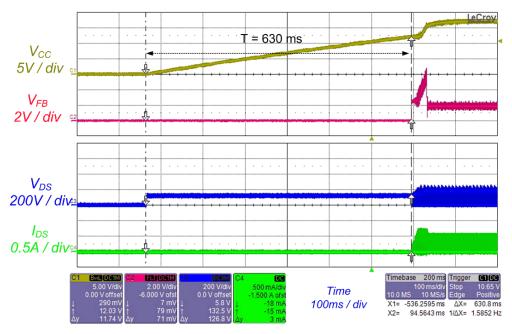


Figure 20. Start-up Waveforms @ V_{IN} = 85 Vac & Full Load

Start–up at V_{IN} = 85 Vac, No Load

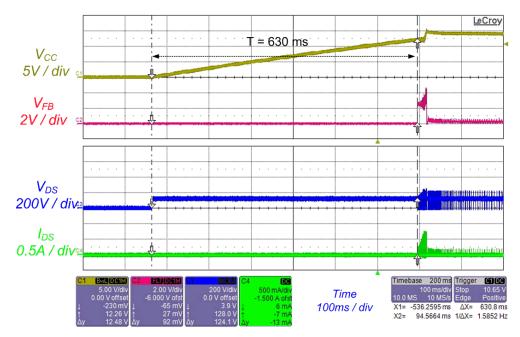


Figure 21. Start-up Waveforms @ V_{IN} = 85 Vac & No Load

Start–up at V_{IN} = 265 Vac, Full Load

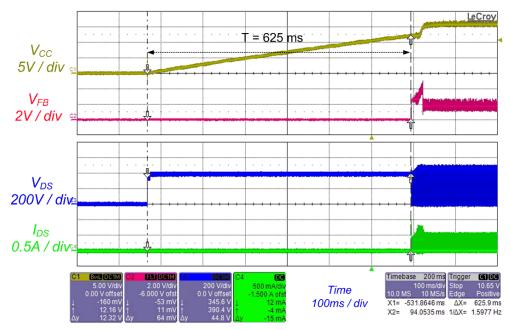


Figure 22. Start-up Waveforms @ V_{IN} = 265 Vac & Full Load

Start–up at V_{IN} = 265 Vac, No Load

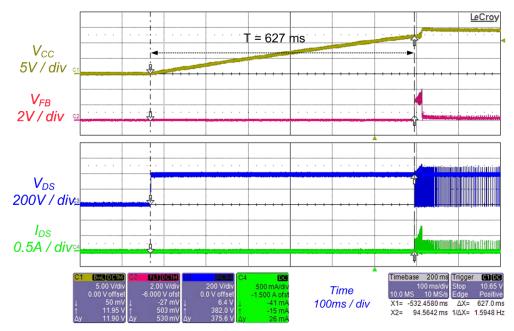


Figure 23. Start-up Waveforms @ V_{IN} = 265 Vac & No Load

Normal Operation

Table 15.

Test Condition	12 V _{OUT}
Load	0.83 A
Output Power	9.96 W

Normal Operation at $V_{IN} = 85 Vac$

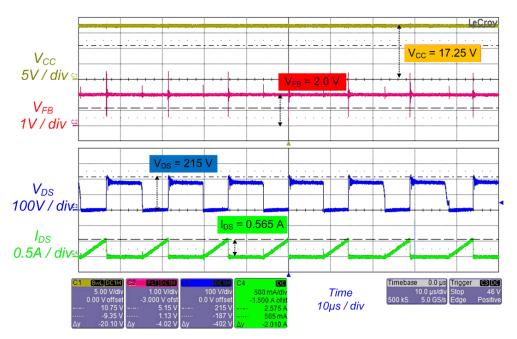
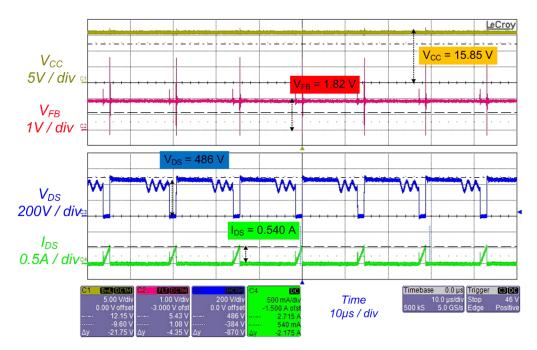



Figure 24. Normal Operation @ V_{IN} = 85 Vac & Full Load

Normal Operation at $V_{IN} = 265 Vac$

Burst Operation

Table 16.

Test Condition	12 V _{OUT}
Load	No Load
Output Power	0 W

Burst Operation at $V_{IN} = 85 Vac$

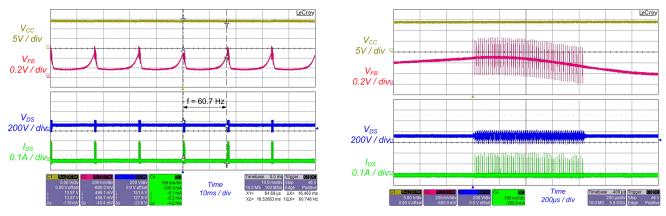


Figure 26. Burst Operation @ V_{IN} = 85 Vac, No Load

Burst Operation at $V_{IN} = 85$ Vac

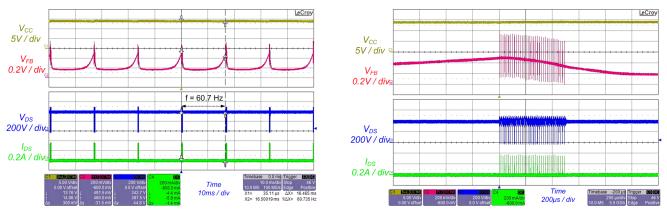
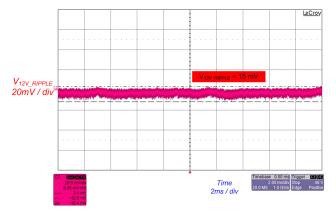



Figure 27. Burst Operation @ V_{IN} = 265 Vac, No Load

Output Voltage Ripple

Table 17.	
Test Condition	12 V _{OUT}
100% load	0.83 A
75% load	0.62 A
50% load	0.41 A
25% load	0.20 A
0% load	0 A

12 V Output Voltage Ripple at V_{IN} = 85 Vac

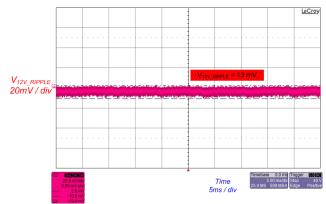


Figure 28. 12 V Ripple @ V_{IN} = 85 Vac, 100% Load

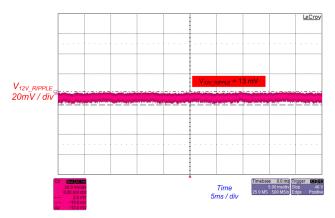


Figure 30. 12 V Ripple @ V_{IN} = 85 Vac, 50% Load

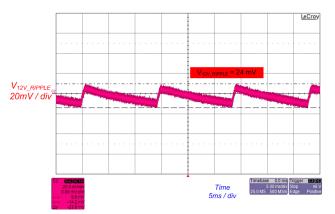


Figure 32. 12 V Ripple @ V_{IN} = 85 Vac, 0% Load

Figure 29. 12 V Ripple @ V_{IN} = 85 Vac, 75% Load

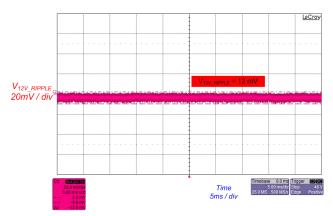
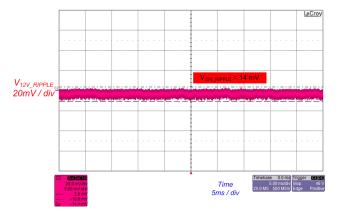



Figure 31. 12 V Ripple @ V_{IN} = 85 Vac, 25% Load

12 V Output Voltage Ripple at V_{IN} = 115 Vac

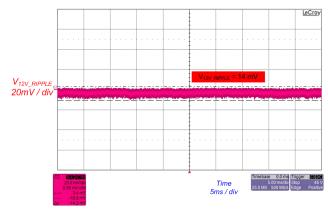


Figure 34. 12 V Ripple @ V_{IN} = 115 Vac, 75% Load

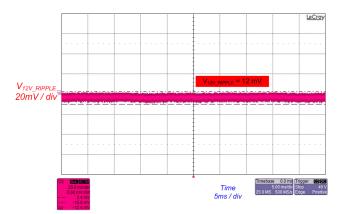


Figure 36. 12 V Ripple @ V_{IN} = 115 Vac, 25% Load

Figure 33. 12 V Ripple @ V_{IN} = 115 Vac, 100% Load

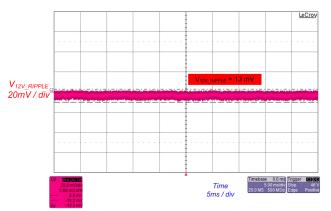


Figure 35. 12 V Ripple @ V_{IN} = 115 Vac, 50% Load

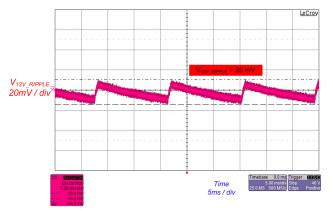
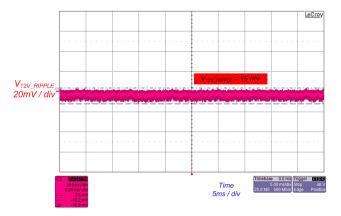



Figure 37. 12 V Ripple @ V_{IN} = 115 Vac, 0% Load

12 V Output Voltage Ripple at V_{IN} = 230 Vac

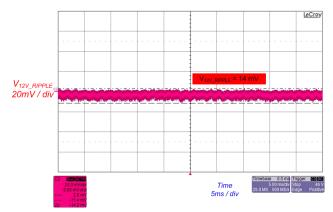


Figure 39. 12 V Ripple @ V_{IN} = 230 Vac, 75% Load

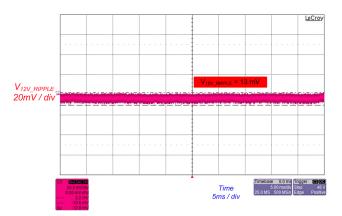


Figure 41. 12 V Ripple @ V_{IN} = 230 Vac, 25% Load

Figure 38. 12 V Ripple @ V $_{\rm IN}$ = 230 Vac, 100% Load

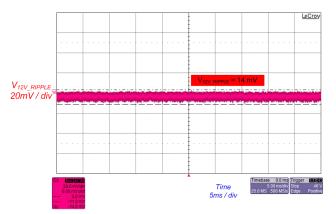


Figure 40. 12 V Ripple @ V_{IN} = 230 Vac, 50% Load

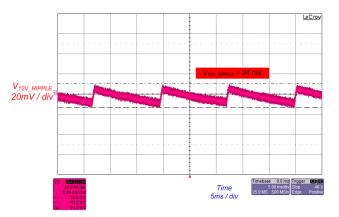
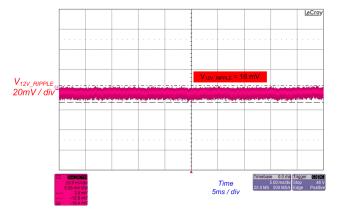



Figure 42. 12 V Ripple @ V_{IN} = 230 Vac, 0% Load

12 V Output Voltage Ripple at V_{IN} = 265 Vac

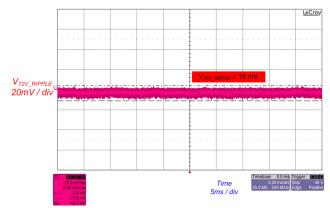


Figure 44. 12 V Ripple @ V_{IN} = 265 Vac, 75% Load

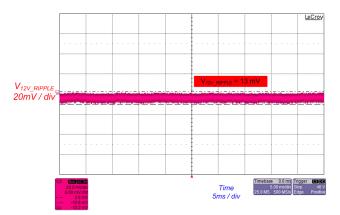


Figure 46. 12 V Ripple @ V_{IN} = 265 Vac, 25% Load

Figure 43. 12 V Ripple @ V_{IN} = 265 Vac, 100% Load

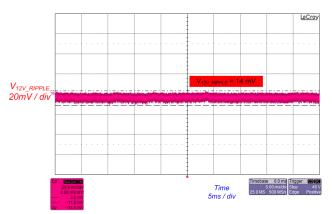


Figure 45. 12 V Ripple @ V_{IN} = 265 Vac, 50% Load

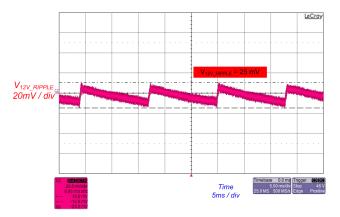
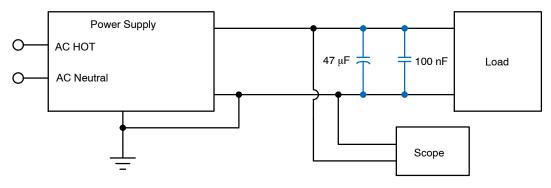



Figure 47. 12 V Ripple @ V_{IN} = 265 Vac, 0% Load

- Measure with additional capacitors (47 μF electrolytic and 100 nF mono) on 5 $V_{OUT}\,PCB$
- Oscilloscope bandwidth: 20 MHz

Table 18. OUTPUT RIPPLE VOLTAGE

	85 Vac	110 Vac	230 Vac	265 Vac	
Load	12 V Ripple	12 V Ripple	12 V Ripple	12 V Ripple	Unit
100%	15	14	16	16	mV
75%	13	14	14	15	
50%	13	13	14	14	
25%	12	12	13	13	
0%	24	25	24	25	

NOTES:

1. Load the output with its maximum load current

- 2. Connect the probes as shown
- 3. Repeat the measurement with standby load on the output

Figure 48.

Output Voltage Regulation

Table 19. OUTPUT VOLTAGE REGULATION

				Load		
VIN	νουτ	100%	75%	50%	25%	No Load
265 Vac	12 V _{OUT}	-0.08%	0.00%	0.08%	0.17%	0.17%
230 Vac		-0.08%	0.00%	0.08%	0.17%	0.17%
115 Vac		0.00%	0.00%	0.08%	0.17%	0.17%
85 Vac		0.00%	0.00%	0.08%	0.17%	0.17%

Short Test

12 V Output Overload at V_{IN} = 85 Vac

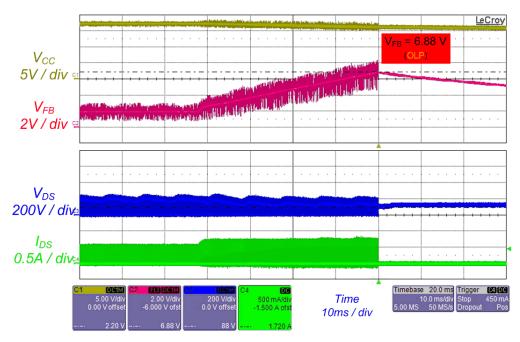


Figure 49. 12 V Output Overload @ V_{IN} = 85 Vac, Full Load

12 V Output Voltage Short at V_{IN} = 85 Vac

12 V Output Voltage Short at V_{IN} = 265 Vac

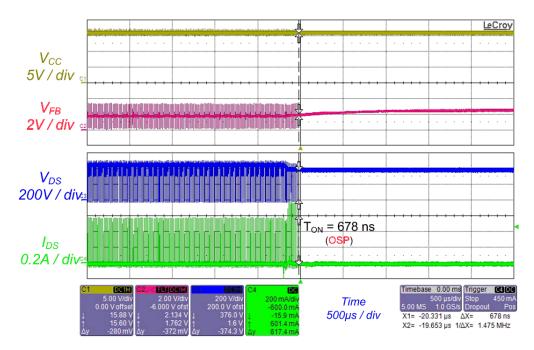
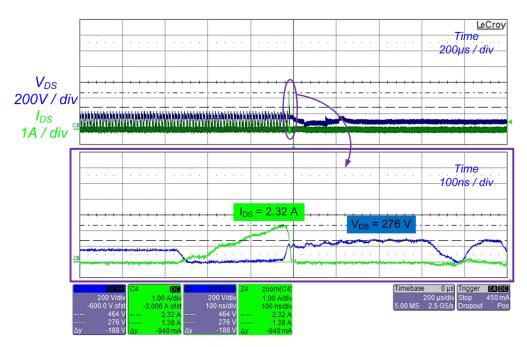



Figure 51. 12 V Output Voltage Short @ V_{IN} = 265 Vac, Full Load

12 V Output Diode Short at $V_{IN} = 85$ Vac

12 V Output Diode Short at V_{IN} = 265 Vac

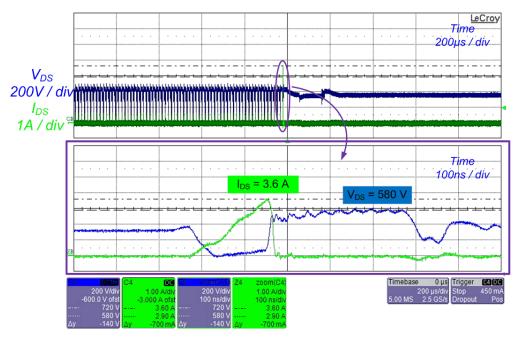
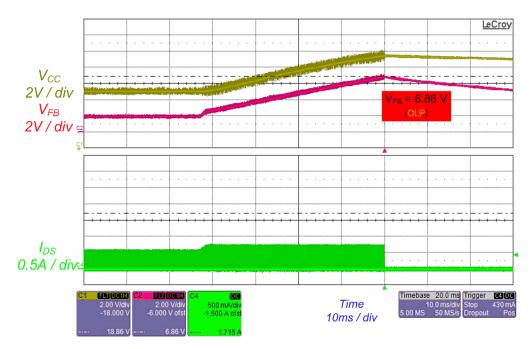



Figure 53. 12 V Output Diode Short @ V_{IN} = 265 Vac, Full Load

 $2^{nd} Opto-coupler Short at V_{IN} = 85 Vac$

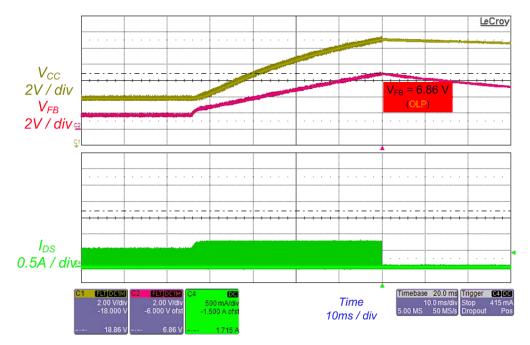
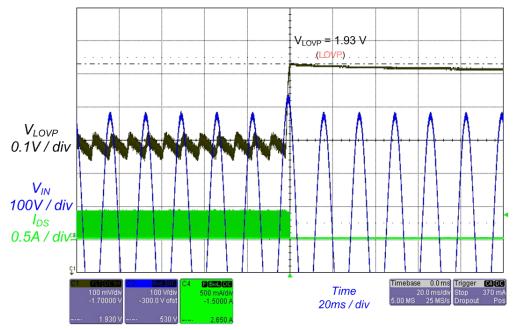
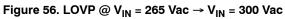
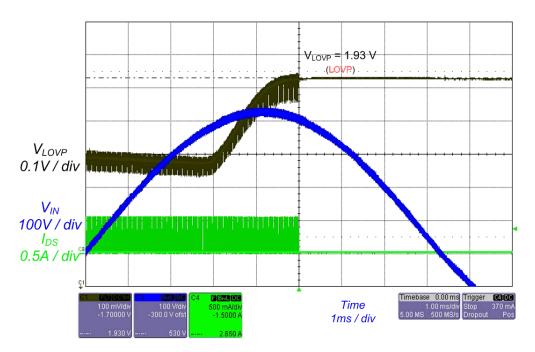
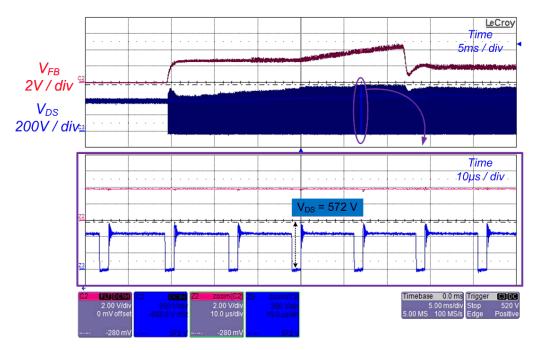
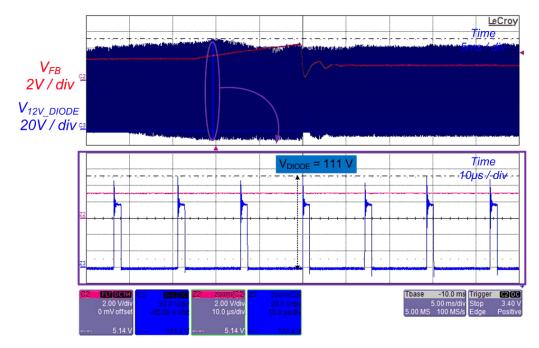




Figure 55. 2nd Opto Short @ V_{IN} = 265 Vac, Full Load

LOVP (Line Over Voltage Protection) Test

LOVP at $V_{IN} = 265 Vac \rightarrow V_{IN} = 300 Vac$


Figure 57. LOVP @ V_{IN} = 265 Vac \rightarrow V_{IN} = 300 Vac, Enlarge

Voltage Stress of Secondary Diode and Drain

Voltage Stress of Drain at V_{IN} = 265 Vac, Full Load

Voltage Stress of 2^{nd} Diode at $V_{IN} = 265$ Vac , Full Load

Figure 59. Diode Voltage @ V_{IN} = 265 Vac, Full Load

TRANSFORMER DESIGN USING DESIGN TOOL

Minimum Line voltage (V _{line} ^{min})	85	V,n	ms				
Maximum Line voltage (V _{line} ^{max})	280						
Line frequency (f _L)		Hz				-	
						-	
	V _{o(n)}		I _{0(n)}		P _{o(n)}		KL
1st output for feedback	12	V.	0,80	A	<u>10</u>	W	1
2nd output		V	0,00		<u>0</u>	W	
3rd output	0	<u>V</u>	0,00		0	W	
4th output 5th output	0	V V	0,00		0 0 0 0	W	
6th output	Ŭ	v	0,00	Â	ŏ	ŵ	
Maximum output power (P _o) =	<u>9,6</u>	w					
Estimated efficiency (E _{ff})	80						
Maximum input power (P _{in}) =	12.0						
Determine DC link capacitor and DC link v	oltage ran	ge					
DC link capacitor (C _{DO})	22	uF					
Minimum DC link voltage (V _{DC} ^{min}) =	<u>85</u>	V.					
Maximum DC link voltage (V _{DC} ^{max})=	<u>396</u>	V.					
Determine Maximum duty ratio (Dmax)							
Maximum duty ratio (D _{max})	0,45						
Max nominal MOSFET voltage (V _{ds} ^{nom}) =	<u>465</u>	V.					
Output voltage reflected to primary (V _{RO})=	<u>69</u>	V.					
	(1 X		k		1 (DCM)		
Determine transformer primary inductance (1.1.1			1 (CCM)		
Switching frequency of FPS (f₅)		kHz					
Ripple factor (K _{RF})	0,91		A 7			1	
Primary side inductance (L _m) =	<u>1008</u>			/		T	
Maximum peak drain current (I _{ds} ^{peak}) =		Α	' (<i>c</i>			
RMS drain current (I _{ds} ^{rms}) =	<u>0,24</u>	Α		Kpr	$r = \frac{\Delta I}{2I_{EDC}}$		
Maximum DC link voltage in CCM (V _{DC} ^{CCM})	<u>94</u>	۷		A.	21 _{EDC}		
Choose the proper FPS considering the in	nut nower	0.0		ant li	mit		_
Typical current limit of FPS (I _{over})		an A	u cum	ent l	mile		
Minimum I _{over} considering tolerance of 12%		A	>	0.6	:	Α	
Minimum lover considering tolerance of 12%	0.70	H .		10.0	0	A.	

Figure 60.

Determine the proper core and the minim			IS				
Saturation flux density (B _{sat})		Т	<u> </u>				
Cross sectional area of core (A _e)	40,1	mm	2				
Minimum primary turns (N _p ^{min})=	<u>62.9</u>	Т					
Determine the number of turns for each	output						
Determine the number of turns for each	σατρατ						
	V _{o(n)}		V _{F(n)}			ŧ	of tur
Vcc (Use Vcc start voltage)	14	٧	0,5	V	13,9	⇒	
1st output for feedback	<u>12</u>	V.	0,5		12		1
2nd output		٧		٧	<u>0.0</u>	=>	
3rd output	0	V.	0	٧	0.0	$ \ge $	
4th output		٧	0	٧	0.0	=>	
5th output		٧	0	V		$\equiv >$	
6th output		٧		V		$\equiv >$	
VF : Forward voltage drop of rectifier diode			Primar	y ti	urns (N _e)=	<u>6</u>
					ugh turns		
Ungapped AL value (AL)	840	nH.			n	=	5,54
Gap length (G) ; center pole gap =	0,1612						0,04
aup lengui (a) / center pore gap -	0,1012		•				
Determine the wire diameter for each wir	ndina						
	Diameter		Parall	el	l _{D(n)} rms	()	√mm ³
Primary winding	0,25		1	Т	I _{D(n)} rma <u>0,2</u>	А	4.9
Vcc winding	0,25 0,2	mm	1 1	T T	<u>0.2</u> <u>0.7</u>	A A	<u>4.9</u> 22.3
Vcc winding 1st output winding (12V)	0,25	mm	1 1 2	T T T	0.2 0.7 1.5	A A A	<u>4.9</u> 22.3 5.8
Vcc winding	0,25 0,2 0,4	mm	1 1 2 0	T T T T	0.2 0.7 1.5	A A	<u>4.9</u> 22.3 5.8
Vcc winding 1st output winding (12V)	0,25 0,2 0,4 0	mm mm	1 1 2 0	T T T T	0.2 0.7 1.5	A A A	<u>4.9</u> 22.3 5.8 ####
Vcc winding 1st output winding (12V) 2nd output winding (0V)	0,25 0,2 0,4 0 0	mm mm mm	1 1 2 0 0	T T T T	0.2 0.7 1.5 #####	A A A	4.9 22.3 5.8 #### #### ####
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V)	0,25 0,2 0,4 0 0 0	mm mm mm mm	1 1 2 0 0 0	T T T T T	0.2 0.7 1.5 ##### ##### #####	A A A A A	<u>4.9</u> <u>22.3</u> <u>5.8</u> <u>####</u> <u>####</u> <u>####</u> <u>####</u>
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V) 4th output winding (0V)	0,25 0,2 0,4 0 0 0	mm mm mm mm	1 1 2 0 0 0	T T T T T	0.2 0.7 1.5 ##### ##### #####	A A A A A	<u>4.9</u> <u>22.3</u> <u>5.8</u> <u>####</u> <u>####</u> <u>####</u> <u>####</u>
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V) 4th output winding (0V) 5th output winding (0V)	0,25 0,2 0,4 0 0 0	mm mm mm mm mm mm	1 2 0 0 0 0	T T T T T T	0.2 0.7 1.5 ##### ##### #####	A A A A A	<u>4.9</u> <u>22.3</u> <u>5.8</u> <u>####</u> <u>####</u> <u>####</u> <u>####</u>
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V) 4th output winding (0V) 5th output winding (0V) 6th output winding (V)	0,25 0,2 0,4 0 0 0 0 0 0 0 0	mm mm mm mm mm mm	1 2 0 0 0 0	T T T T T T	0.2 0.7 1.5 ##### ##### #####	A A A A A	<u>4.9</u> <u>22.3</u> <u>5.8</u> <u>####</u> <u>####</u> <u>####</u> <u>####</u>
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V) 4th output winding (0V) 5th output winding (0V) 6th output winding (V) Copper area (A _c) =	0,25 0,2 0,4 0 0 0 0 0 0 0	mm mm mm mm mm mm	1 2 0 0 0 0	T T T T T T	0.2 0.7 1.5 ##### ##### #####	A A A A A	<u>4.9</u> <u>22.3</u> <u>5.8</u> <u>####</u> <u>####</u> <u>####</u> <u>####</u>
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V) 4th output winding (0V) 5th output winding (0V) 6th output winding (V) Copper area $(A_c) =$ Fill factor (K_F) Required window area (A_{wr})	0,25 0,2 0,4 0 0 0 0 0 0 0 5,72 0,15 44,79	mm mm mm mm mm mm	1 2 0 0 0 0	T T T T T T	0.2 0.7 1.5 ##### ##### #####	A A A A A	<u>4.9</u> <u>22.3</u> <u>5.8</u> <u>####</u> <u>####</u> <u>####</u> <u>####</u>
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V) 4th output winding (0V) 5th output winding (0V) 6th output winding (V) Copper area $(A_c) =$ Fill factor (K_F)	0,25 0,2 0,4 0 0 0 0 0 0 0 5,72 0,15 44,79	mm mm mm mm mm mm	1 2 0 0 0 0	T T T T T T	0.2 0.7 1.5 ##### ##### #####	A A A A A	<u>4.9</u> <u>22.3</u> <u>5.8</u> <u>####</u> <u>####</u> <u>####</u> <u>####</u>
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V) 4th output winding (0V) 5th output winding (0V) 6th output winding (V) Copper area $(A_c) =$ Fill factor (K_F) Required window area (A_{wr})	0,25 0,2 0,4 0 0 0 0 0 0 0 5,72 0,15 44,79	mm mm mm mm mm mm	1 2 0 0 0 0	T T T T T T	0.2 0.7 1.5 ##### ##### #####	A A A A A	<u>4.9</u> <u>22.3</u> <u>5.8</u> <u>####</u> <u>####</u> <u>####</u> <u>####</u>
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V) 4th output winding (0V) 5th output winding (0V) 6th output winding (V) Copper area $(A_c) =$ Fill factor (K_F) Required window area (A_{wr}) Choose the rectifier diode in the second Vcc diode	0,25 0,2 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mm mm mm mm mm mm	1 2 0 0 0 0	T T T T T T	0.2 0.7 1.5 ##### ##### ##### ##### #####	A A A A A	<u>4.9</u> <u>22.3</u> <u>5.8</u> <u>####</u> <u>####</u> <u>####</u> <u>####</u>
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V) 4th output winding (0V) 5th output winding (0V) 6th output winding (V) Copper area $(A_c) =$ Fill factor (K_F) Required window area (A_{wr}) Choose the rectifier diode in the second Vcc diode Rectifier diode for 1st output (12V)	0,25 0,2 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mm mm mm mm mm mm	1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T T T T T T	0.2 0.7 1.5 ##### ##### ##### ##### Jun 10	A A A A A A	<u>4.9</u> <u>22.3</u> <u>5.8</u> <u>####</u> <u>####</u> <u>####</u> <u>####</u>
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V) 4th output winding (0V) 5th output winding (0V) 6th output winding (V) Copper area $(A_c) =$ Fill factor (K_F) Required window area (A_{wr}) Choose the rectifier diode in the second Vcc diode	0,25 0,2 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mm mm mm mm mm mm	1 2 0 0 0 0 1 ² 1 ²	T T T T T T	0,2 0,7 1,5 ##### ##### ##### ##### ##### Jun D(n) 0,10 1,46	A A A A A A	<u>4.9</u> <u>22.3</u> <u>5.8</u> <u>####</u> <u>####</u> <u>####</u> <u>####</u>
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V) 4th output winding (0V) 5th output winding (0V) 6th output winding (V) Copper area $(A_c) =$ Fill factor (K_F) Required window area (A_{wr}) Choose the rectifier diode in the second Vcc diode Rectifier diode for 1st output (12V)	0,25 0,2 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mm mm mm mm mm mm	1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T T T T T T	0.2 0.7 1.5 ##### ##### ##### ##### Junnon 0.10 1.46	A A A A A A A A A A A A	<u>4.9</u> <u>22.3</u> <u>5.8</u> <u>####</u> <u>####</u> <u>####</u> <u>####</u>
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V) 4th output winding (0V) 5th output winding (0V) 6th output winding (V) Copper area (A_c) = Fill factor (K_F) Required window area (A_{wr}) Choose the rectifier diode in the second Vcc diode Rectifier diode for 1st output (12V) Rectifier diode for 2nd output (0V)	0,25 0,2 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mm mm mm mm mm mm	1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T T T T T T	0.2 0.7 1.5 ##### ##### ##### ##### Junce Interimental In	A A A A A A A A A A A A A A A	<u>4.9</u> <u>22.3</u> <u>5.8</u> <u>####</u> <u>####</u> <u>####</u> <u>####</u>
Vcc winding 1st output winding (12V) 2nd output winding (0V) 3rd output winding (0V) 4th output winding (0V) 5th output winding (0V) 6th output winding (V) Copper area $(A_c) =$ Fill factor (K_F) Required window area (A_{wr}) Choose the rectifier diode in the second Vcc diode Rectifier diode for 1st output (12V) Rectifier diode for 2nd output (0V) Rectifier diode for 3rd output (0V)	0,25 0,2 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mm mm mm mm mm mm	1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T T T T T T	0.2 0.7 1.5 ##### ##### ##### ##### 0,10 1.46 ##### #####	A A A A A A A A A A A A A A A A A	/mm ² 22.3 5.8 #### #### #### #### ####

SENSEFET is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

onsemi, ONSEMi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, development, development, and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by **onsemi** shall not constitute any representation or warranty by **onsemi**, and no additional obligations or liabilities shall arise from **onsemi** having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by **onsemi** to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: **onsemi** shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if **onsemi** is advised of the possibility of such damages. In no event shall **onsemi**'s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per **onsemi**'s standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS: Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales