8.4 W LED Driver at Universal Line

Evaluation Board Overview

This user guide supports the evaluation kit for the FL7733A. It should be used in conjunction with the FL7733A datasheet as well as ON Semiconductor's application notes and technical support team. Please visit ON Semiconductor website at www.onsemi.com.

INTRODUCTION

This document describes an universal AC input voltage LED driver using the FL7733A Primary–Side Regulator (PSR) single–stage controller. The input voltage range is 90 $V_{RMS} \sim 265\ V_{RMS}$ and there is one DC output with a constant current of 350 mA at 24 V. This document contains a general description of the FL7733A, the power supply solution specification, schematic, bill of materials, and typical operating characteristics.

General Description of FL7733A

The FL7733A is an active Power Factor Correction (PFC) controller for use in single-stage flyback topology or buck-boost topology. Primary-side regulation and single-stage topology minimize cost by reducing external components such as the input bulk capacitor and feedback circuitry. To improve Power Factor (PF) and Total Harmonic Distortion (THD), constant on-time control is utilized with an internal error amplifier and a low bandwidth compensator. Precise constant-current control regulates accurate output current, independent of input voltage and output voltage. Operating frequency is proportionally changed by the output voltage to guarantee Discontinuous Current Mode (DCM) operation, resulting in high efficiency and simple design. The FL7733A also provides open-LED, short-LED, and over-temperature protection functions.

ON Semiconductor®

www.onsemi.com

EVAL BOARD USER'S MANUAL

Controller Features

High Performance

- Cost–Effective Solution; No Input Bulk Capacitor / Secondary Feedback Circuitry
- Power Factor Correction
- THD < 10% Over Universal Input Line Range
- CC Tolerance
 - < $\pm 1\%$ Over Universal Line Voltage Variation < $\pm 1\%$ by 50% ~ 100% Load Voltage Variation < $\pm 1\%$ by $\pm 20\%$ Magnetizing Inductance Variation
- High-Voltage Startup with VDD Regulation
- Adaptive Feedback Loop Control for No Overshoot at Startup

High Reliability

- LED Short / Open Protection
- Output Diode Short Protection
- Sensing Resistor Short / Open Protection
- V_{DD} Over-Voltage Protection (OVP)
- V_{DD} Under-Voltage Lockout (UVLO)
- Over-Temperature Protection (OTP)
- All Protections are Auto Restart
- Cycle-by-Cycle Current Limit
- Application Voltage Range: 80 V_{AC} ~ 308 V_{AC}

CONTROLLER INTERNAL BLOCK DIAGRAM

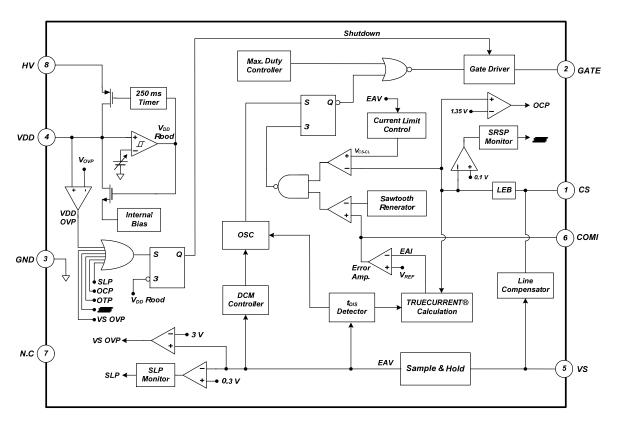


Figure 1. Block Diagram

EVALUATION BOARD SPECIFICATIONS

Table 1. SPECIFICATIONS FOR LED LIGHTING LOAD

Desc	cription	Symbol	Value	Comments
		$V_{IN.MIN}$	90 V _{AC}	Minimum AC Line Input Voltage
Input	Voltage	V _{IN.MAX}	265 V _{AC}	Maximum AC Line Input Voltage
put		V _{IN.NOMINAL}	120 V / 230 V	Nominal AC Line Input Voltage
	Frequency	f _{IN}	60 Hz / 50 Hz	Line Frequency
	Voltage	$V_{OUT.MIN}$	13 V	Minimum Output Voltage
	Voltage -	V _{OUT.MAX}	28 V	Maximum Output Voltage
Output		VOUT.NOMINAL	24 V	Nominal Output Voltage
	Current	IOUT.NOMINAL	350 mA	Nominal Output Current
	Current	CC Deviation	90 V _{AC} 265 V _{AC} 120 V / 230 V 60 Hz / 50 Hz 13 V 28 V 24 V 350 mA < ±0.29% Lin < ±0.72% 86.41% 87.88% 88.25% 88.68% 88.95% 88.96% 0.996 / 3.85% 0.992 / 3.61% 0.988 / 4.16% 0.988 / 4.16% 0.975 / 4.90% 0.945 / 6.01% 0.914 / 7.06% 52.9°C	Line Input Voltage Change: 90~265 VAC
		CC Deviation	< ±0.72%	Output Voltage Change: 13~28 V
		Eff90VAC	86.41%	Efficiency at 90 V _{AC} Input Voltage
		Eff120VAC	87.88%	Efficiency at 120 V _{AC} Input Voltage
Effic	ciency	Eff140VAC	88.25%	Efficiency at 140 V _{AC} Input Voltage
		Eff180VAC	88.68%	Efficiency at 180 V _{AC} Input Voltage
		Eff230VAC	88.95%	Efficiency at 230 V _{AC} Input Voltage
		Eff265VAC	88.96%	Efficiency at 265 V _{AC} Input Voltage
		PF /THD _{90VAC}	0.996 / 3.85%	PF/THD at 90 V _{AC} Input Voltage
		PF / THD _{120VAC}	0.992 / 3.61%	PF/THD at 120 V _{AC} Input Voltage
PF	/ THD	PF / THD _{140VAC}	0.988 / 4.16%	PF/THD at 140 V _{AC} Input Voltage
		PF / THD _{180VAC}	0.975 / 4.90%	PF/THD at 180 V _{AC} Input Voltage
		PF / THD _{230VAC}	0.945 / 6.01%	PF/THD at 230 V _{AC} Input Voltage
		PF / THD _{265VAC}	0.914 / 7.06%	PF/THD at 265 V _{AC} Input Voltage
	FL7733A	Tfl7733A	52.9°C	Open-Frame Condition (T _A = 25°C)FL7733A Temperature
Temperature	Primary MOSFET	T _{MOSFET}	61.2°C	Primary MOSFET Temperature
	Secondary Diode	T _{DIODE}	52.8°C	Secondary Diode Temperature
	Transformer	T _{TRANSFORMER}	56.0°C	Transformer Temperature
	L		1	L

^{1.} All data of the evaluation board measured with the board was enclosed in a case and external temperature around $T_A = 25^{\circ}C$

EVALUATION BOARD PHOTOGRAPHS

Dimensions: 64 mm (L) x 26 mm (W) x 26 mm (H)

Figure 2. Top View

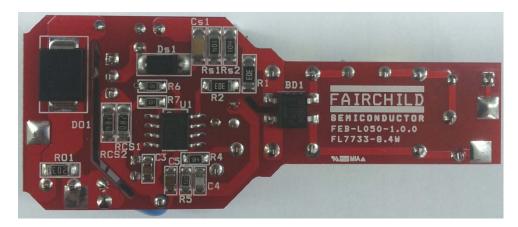
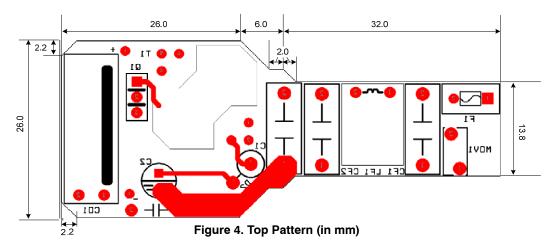



Figure 3. Bottom View

EVALUATION BOARD PRINTED CIRCUIT BOARD (PCB)

DS1

R51RS2

R1

BD1

FAIRCHILD

SEMICONDUCTOR
FEB-L050-1.0.0
FL7733-B.4W

Figure 5. Top Pattern

EVALUATION BOARD SCHEMATIC

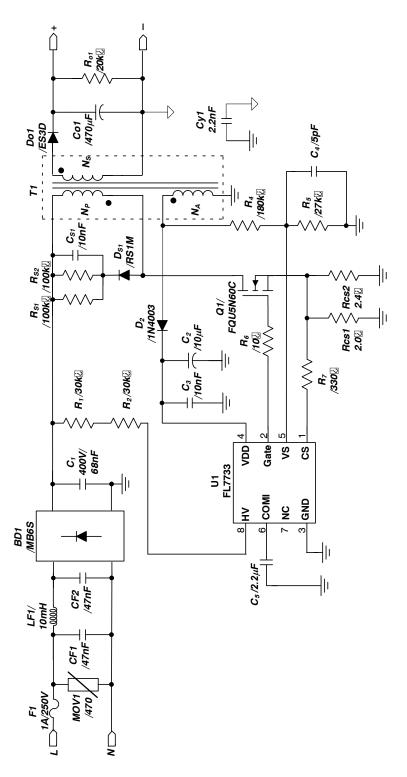


Figure 6. Schematic

Table 2. EVALUATION BOARD BILL OF MATERIALS

Item No.	Part Reference	Part Number	Qty.	Description	Manufacturer
1	BD1	MB8S	1	Bridge Diode	ON Semiconductor
2	CF1	MPX AC275V 473K	2	47 nF / AC275V, X-Capacitor	Carli
3	CS1	C1206C103KDRACTU	1	10 nF / 1 kV, SMD Capacitor 1206	Kemet
4	CY1	SCFz2E222M10BW	1	2.2 nF / 250 V, Y-Capacitor	Samwha
5	Co1	NXH 470 μF 35 V	1	470 μF / 35 V, Electrolytic Capacitor	Samyoung
6	C1	MPE400V683K	1	68 nF / 400 V, MPE Film Capacitor	Sungho
7	C2	KMG 10 μF / 35 V	1	10 μF / 35 V, Electrolytic Capacitor	Samyoung
8	C3	C0805C104K5RACTU	1	100 nF / 50 V, SMD Capacitor 2012	Kemet
9	C4	C0805C519C3GACTU	1	5.1 pF / 25 V, SMD Capacitor 2012	Kemet
10	C5	C0805C225K3PAC7800	1	2.2 μF / 25 V, SMD Capacitor 2012	Kemet
11	DS1	RS1M	1	1000 V / 1 A, Ultra-Fast Recovery Diode	ON Semiconductor
12	Do1	ES3D	1	200 V / 3 A, Fast Rectifier	ON Semiconductor
13	D2	1N4003	1	200 V / 1 A, General-Purpose Rectifier	ON Semiconductor
14	F1	SS-5-1A	1	250 V / 1 A, Fuse	Bussmann
15	LF1	R10302KT00	1	10 mH, Inductor, 8∅	Bosung
16	MOV1	SVC471D-07A	1	Metal Oxide Varistor	Samwha
17	Q1	FQU5N60C	1	600 V / 2.8 A, N-Channel MOSFET	ON Semiconductor
18	R6	RC0805JR-0710RL	1	10 kΩ SMD Resistor 0805	Yageo
19	RS1, RS2	RC1206JR-07100RL	2	100 kΩ, SMD Resistor 1206	Yageo
20	Rcs1	RC1206JR-072RL	1	2 Ω, SMD Resistor 1206	Yageo
21	Rcs2	RC1206JR-072R4L	1	2.4 Ω SMD Resistor 1206	Yageo
22	R7	RC0805JR-07330RL	1	330 Ω SMD Resistor 0805	Yageo
23	Ro1	RC1206JR-0720KL	1	20 kΩ SMD Resistor 1206	Yageo
24	R4	RC0805JR-07180KL	1	180 kΩ SMD Resistor 0805	Yageo
25	R1, R2	RC1206JR-0730KL	2	30 kΩ SMD Resistor 1206	Yageo
26	R5	RC0805JR-0727KL	1	27 kΩ SMD Resistor 0805	Yageo
27	T1	RM6 Core	1	6-Pin, Transformer	TDK
28	U1	FL7733A	1	Main PSR Controller	ON Semiconductor

TRANSFORMER DESIGN

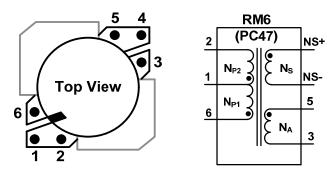


Figure 7. Transformer Bobbin Structure and Pin Configuration

Figure 8. Transformer Winding Structure

Table 3. WINDING SPECIFICATIONS

No	Winding	Pin (S → F)	Wire	Turns	Winding Method	
1	N _{P1}	6 → 1	0.20 ψ	54 Ts	Solenoid Winding	
2		Insulation: Polyester Tape t = 0.025 mm, 3-Layer				
3	N _S	NS+ → NS-	0.25 ψ(TIW)	25 Ts	Solenoid Winding	
4		Insulation: Polyester Tape t = 0.025 mm, 3-Layer				
5	N _{P2}	1 → 2	0.20 ψ	27 Ts	Solenoid Winding	
6		Insulation: Polyester Tape t = 0.025 mm, 3-Layer				
7	N _A	5 → 3	0.20 ψ	17 Ts	Solenoid Winding	
8		Insulation: Polyester Tape t = 0.025 mm, 3-Layer				

Table 4. ELECTRICAL CHARACTERISTICS

	Pins	Specifications	Remark
Inductance	6 – 2	1.0 mH ± 10%	60 kHz, 1 V
Leakage	6 – 2	10 μΗ	60 kHz, 1 V, Short All Output Pins

EVALUATION BOARD PERFORMANCE

Table 5. TEST CONDITION & EQUIPMENT LIST

Ambient Temperature	T _A = 25°C
	AC Power Source: PCR500L by Kikusui Power Analyzer: PZ4000000 by Yokogawa Electronic Load: PLZ303WH by KIKUSUI Multi Meter: 2002 by KEITHLEY, 45 by FLUKE Oscilloscope: 104Xi by LeCroy Thermometer: Thermal CAM SC640 by FLIR SYSTEMS LED: EHP-AX08EL/GT01H-P03 (3 W) by Everlight

Startup

Figure 9 and Figure 10 show the overall startup performance at rated output load. The output load current starts flowing after about 0.2 s and 0.1 s for input voltage

90 V_{AC} and 265 V_{AC} condition when the AC input power switch turns on; CH1: V_{DD} (10 V / div), CH2: V_{IN} (100 V / div), CH3: V_{LED} (20 V / div), CH4: I_{LED} (200 mA / div), Time Scale: (100 ms / div), Load:7 series–LEDs.

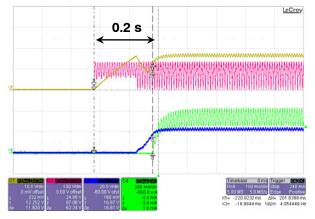


Figure 9. V_{IN} = 90 V_{AC} / 60 Hz

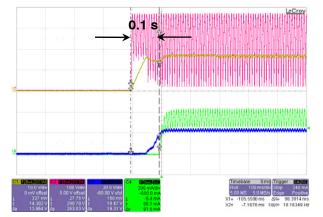


Figure 10. $V_{IN} = 120 V_{AC} / 60 Hz$

Operation Waveforms

Figure 11 to Figure 14 show AC input and output waveforms at rated output load. CH1: $I_{\rm IN}$ (1.00 A / div),

CH2: V_{IN} (100 V / div), CH3: V_{LED} (20 V / div), CH4: I_{LED} (200 mA / div), Time Scale: (5 ms / div), Load: 7 series LEDs.

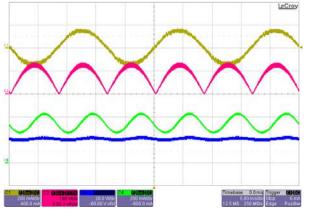


Figure 11. V_{IN} = 90 V_{AC} / 60 Hz

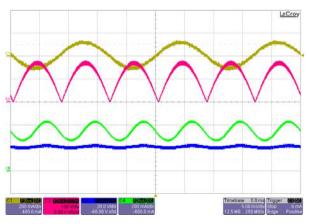


Figure 12. V_{IN} = 120 V_{AC} / 60 Hz

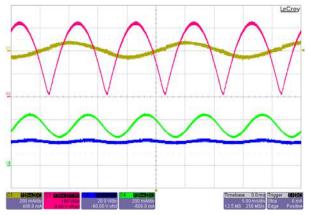


Figure 13. V_{IN} = 230 V_{AC} / 50 Hz

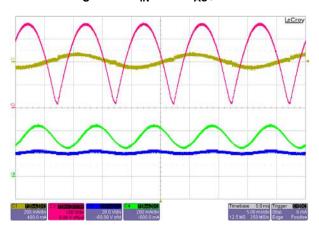


Figure 14. V_{IN} = 265 V_{AC} / 50 Hz

Figure 15 to Figure 18 show key waveforms of single stage flybuck converter operation for line voltage at rated output load. CH1: V_{CS} (500 mA / div), CH2: V_{DS} (200 V /

div), CH3: V_{SEC-diode} (100 V / div), CH4: I_{SEC-Diode} (2.0 A / div), Load: 7 series–LEDs.

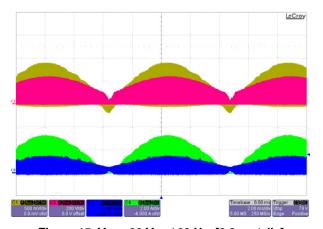


Figure 15. $V_{IN} = 90 V_{AC} / 60 Hz$, [2.0 ms/ div]

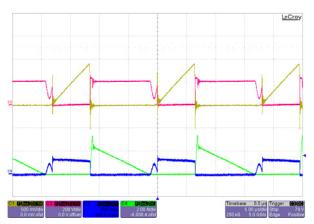


Figure 16. V_{IN} = 90 V_{AC} / 60 Hz, [5.0 μ s/ div]

Figure 17. V_{IN} = 265 V_{AC} / 60 Hz, [2.0 ms/ div]

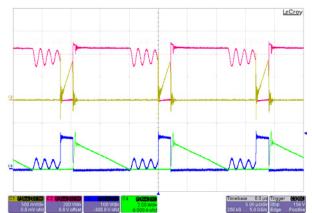


Figure 18. V_{IN} = 265 V_{AC} / 60 Hz, [5.0 $\mu s/$ div]

Constant-Current Regulation

Constant-current deviation in the wide output voltage range from 13 V to 28 V is less than $\pm 0.8\%$ at each line

voltage. Line regulation at the rated output voltage (24 V) is less than $\pm 0.3\%$. The results were measured using E-load [CR Mode].

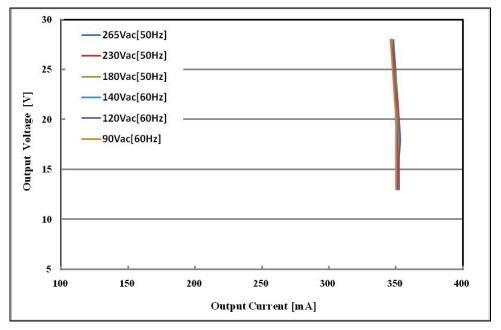


Figure 19. Constant-Current Regulation

Table 6. CONSTANT-CURRENT REGULATION BY OUTPUT VOLTAGE CHANGE (13 V \sim 28 V)

Input Voltage	Min. Current [mA]	Max. Current [mA]	Tolerance
90 V _{AC} [60 Hz]	346	350	±0.57%
120 V _{AC} [60 Hz]	346	351	±0.72%
140 V _{AC} [60 Hz]	346	351	±0.72%
180 V _{AC} [50 Hz]	347	352	±0.72%
230 V _{AC} [50 Hz]	347	352	±0.72%
265 V _{AC} [50 Hz]	348	353	±0.71%

Table 7. CONSTANT-CURRENT REGULATION BY LINE VOLTAGE CHANGE (90 \sim 265 V_{AC})

Output Voltage	90 V _{AC} [60 Hz]	120 V _{AC} [60 Hz]	140 V _{AC} [60 Hz]	180 V _{AC} [50 Hz]	230 V _{AC} [50 Hz]	265 V _{AC} [50 Hz]	Tolerance
26 V	347 mA	348 mA	348 mA	348 mA	349 mA	349 mA	±0.29%
24 V	348 mA	349 mA	349 mA	350 mA	350 mA	350 mA	±0.29%
22 V	349 mA	350 mA	349 mA	350 mA	351 mA	351 mA	±0.29%

Short / Open-LED Protections

Figure 20 to Figure 23 show waveforms for protections operated when the LED is shorted and recovered. Once the LED short occurs, SCP is triggered and VDD starts hiccup mode with JFET regulation times [250 ms]. This lasts until

the fault condition is eliminated. Systems can restart automatically when returned to normal condition. CH1: V_{GATE} (10 V / div), CH2: V_{IN} (100 V / div), CH3: V_{DD} (5 V / div), I_{OUT} (200 mA / div), Time Scale: (200 ms / div).

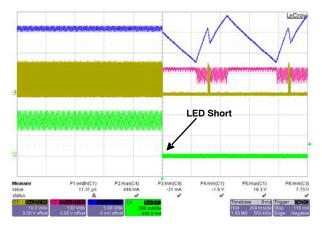


Figure 20. $V_{IN} = 90 V_{AC} / 60 Hz$, [LED Short]

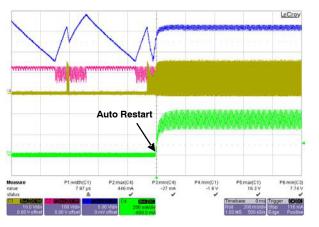


Figure 21. $V_{IN} = 90 V_{AC} / 60 Hz$, [LED Restore]

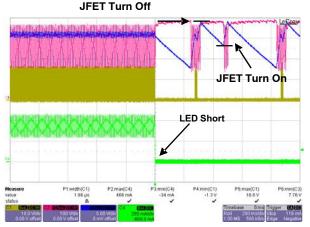


Figure 22. $V_{IN} = 265 V_{AC} / 50 Hz$, [LED Short]

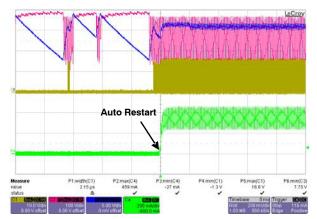


Figure 23. $V_{IN} = 265 V_{AC} / 50 Hz$, [LED Restore]

Figure 24 to Figure 27 show waveforms for protections operated when the LED is opened and recovered. Once the LED has opened, VS OVP or VDD OVP are triggered and VDD starts "hiccup" mode with JFET regulation times [250 ms]. This lasts until the fault condition is eliminated.

Systems can restart automatically when returned to normal condition. V_{GATE} (10 V / div), CH2: V_{IN} (100 V / div), CH3: V_{DD} (10 V / div), V_{OUT} (10 V / div), Time Scale: (200 ms / div).

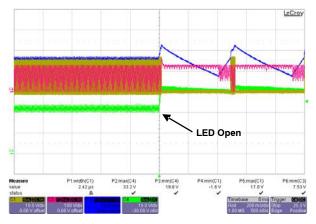


Figure 24. $V_{IN} = 90 V_{AC} / 60 Hz$, [LED Short]

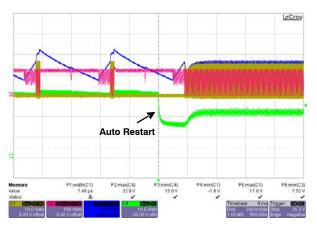


Figure 25. $V_{IN} = 90 V_{AC} / 60 Hz$, [LED Restore]

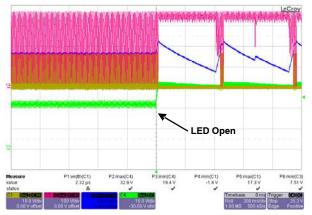


Figure 26. $V_{IN} = 265 V_{AC} / 50 Hz$, [LED Short]

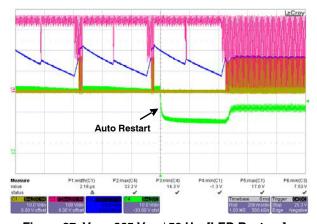


Figure 27. V_{IN} = 265 V_{AC} / 50 Hz, [LED Restore]

NOTE: If the LED load is re-connected after an open-LED condition, the output capacitor is quickly discharged through the LED load and the inrush current by the discharge could destroy LED load.

Efficiency

System efficiency is $86.41\% \sim 88.96\%$ over input voltages $90 \sim 265~V_{AC}$. The results were measured using actual, rated LED loads 30 minutes after startup.

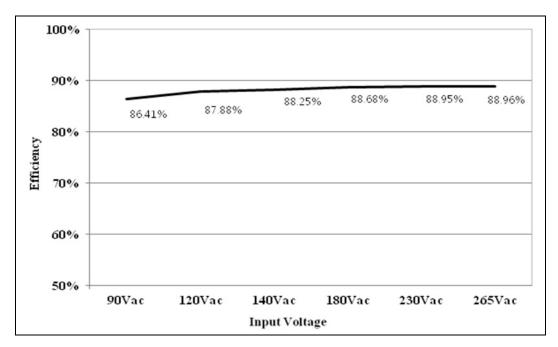


Figure 28. System Efficiency

Table 8. SYSTEM EFFICIENCY

Input Voltage	Input Power (W)	Output Current (A)	Output Voltage (V)	Output Power (W)	Efficiency (%)
90 V _{AC} [60 Hz]	9.52	0.351	23.43	8.23	86.41%
120 V _{AC} [60 Hz]	9.39	0.352	23.45	8.25	87.88%
140 V _{AC} [60 Hz]	9.38	0.352	23.49	8.28	88.25%
180 V _{AC} [50 Hz]	9.33	0.354	23.40	8.27	88.68%
230 V _{AC} [50 Hz]	9.35	0.355	23.42	8.32	88.95%
265 V _{AC} [50 Hz]	9.38	0.356	23.46	8.34	88.96%

Power Factor (PF) & Total Harmonic Distortion (THD)

The FL7733A evaluation board shows excellent THD performance, much less than 10%. The results were

measured using actual, rated LED loads 10 minutes after startup.

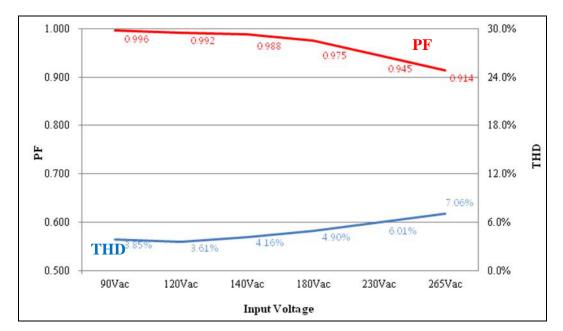


Figure 29. Power Factor & Total Harmonic Distortion

Table 9. POWER FACTOR & TOTAL HARMONIC DISTORTION

Input Voltage	Output Current (A)	Output Voltage (V)	Power Factor	THD (%)
90 V _{AC} [60 Hz]	0.351	23.43	0.996	3.85%
120 V _{AC} [60 Hz]	0.352	23.45	0.992	3.61%
140 V _{AC} [60 Hz]	0.352	23.49	0.988	4.16%
180 V _{AC} [50 Hz]	0.354	23.40	0.975	4.90%
230 V _{AC} [50 Hz]	0.355	23.42	0.945	6.01%
265 V _{AC} [50 Hz]	0.356	23.46	0.914	7.06%

Harmonics

Figure 30 to Figure 33 shows current harmonics measured using actual rated LED loads.

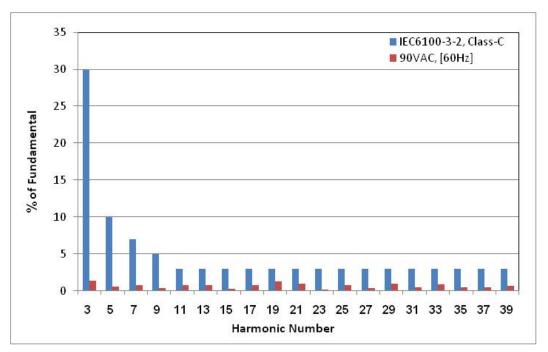


Figure 30. V_{IN} = 90 V_{AC} / 60 Hz

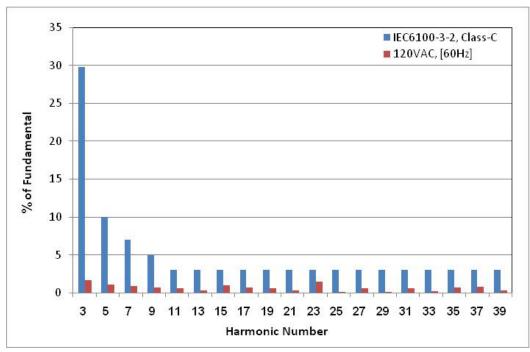


Figure 31. V_{IN} = 120 V_{AC} / 60 Hz

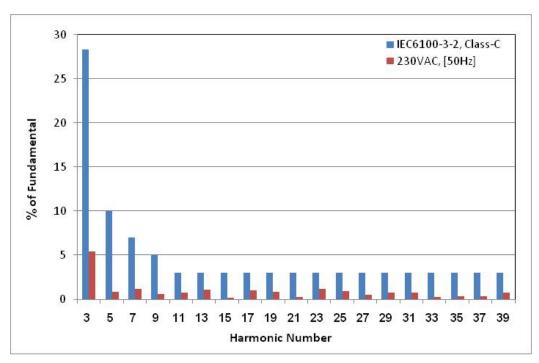


Figure 32. V_{IN} = 230 V_{AC} / 50 Hz

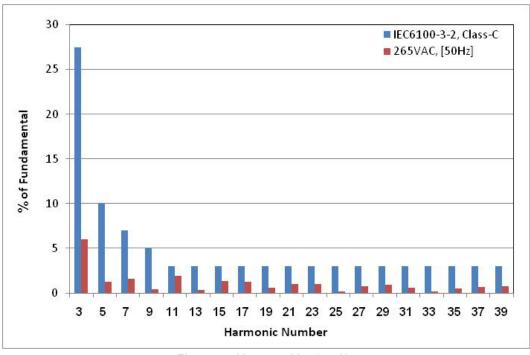


Figure 33. V_{IN} = 265 V_{AC} / 50 Hz

Operating Temperature

Temperatures on all components for this board are less than 62°C. The result were measured using actual rated LED load s 60 minutes after startup.

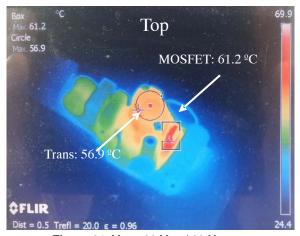


Figure 34. V_{IN} = 90 V_{AC} / 60 Hz

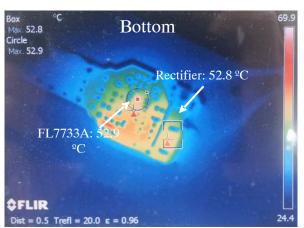


Figure 36. V_{IN} = 90 V_{AC} / 60 Hz

NOTE: The IC temperature can be improved by the PCB layout.

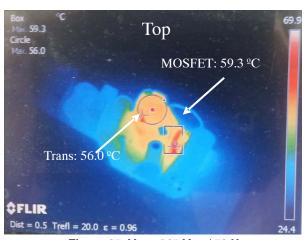


Figure 35. V_{IN} = 265 V_{AC} / 50 Hz

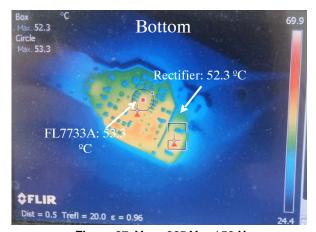


Figure 37. V_{IN} = 265 V_{AC} / 50 Hz

Electromagnetic Interference (EMI)

All measurements were conducted in observance of EN55022 criteria. The result were measured using actual rated LED loads 30 minutes after startup.

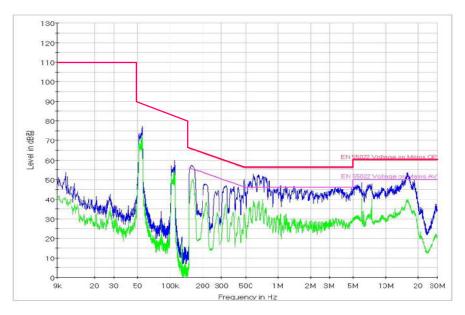


Figure 38. V_{IN} [110 V_{AC} , LIVE]

Figure 39. V_{IN} [220 V_{AC} , Neutral]

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by **onsemi** shall not constitute any representation or warranty by **onsemi**, and no additional obligations or liabilities shall arise from **onsemi** having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by **onsemi** to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: **onsemi** shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if **onsemi** is advised of the possibility of such damages. In no event shall **onsemi**'s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per **onsemi**'s standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales