NCV7535EVB

NCV7535 SPI Controlled H-Bridge Pre-Driver Evaluation Board User’s Manual

Introduction
This document describes the NCV7535 EVB board for the ON Semiconductor NCV7535 SPI controlled H-bridge and Dual–Half Bridge pre-driver. The functionality and major parameters can be evaluated with the NCV7535 EVB board.

The NCV7535 is a monolithic SPI controlled chip with enhanced feature set useful in automotive systems. Besides the SPI bus interface, the IC features an H-bridge pre-driver to control a DC-motor. This allows a highly integrated solution.

Evaluation Board Features
• N–MOSFET Reverse Protection and Decoupling on the Main (Battery) Supply
• On–board +5 V LDO
• MCU with USB Interface Controlling NCV7535
• One–row Pin Header, providing the Circuit Signals, enables Easy Insertion of the Evaluation Board into a more Complex Application Setup
• On–board Current Sensing Shunt Resistor and Operational Amplifier
• Good Thermal Connection of the Power MOSFETs allowing High Current Capability
• Oscilloscope Test–points on all Important Signals
• M4 Screw Connectors for Power Signals (Battery, Ground, Output)
The evaluation board consists of two main blocks: NCV7535 application and control MCU including USB interface (see Figure 2).

Figure 2. NCV7535 Evaluation Board Schematic
Table 1. ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>External Pin</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply voltage</td>
<td>Vbat</td>
<td>−40</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Digital Supply voltage</td>
<td>VCC</td>
<td>−0.3</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Digital inputs/outputs voltage</td>
<td>CSB, SCLK, SDI, SDO, EN, PWM</td>
<td>−0.3</td>
<td>VCC + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Current sense output voltage</td>
<td>Vsen</td>
<td>−0.3</td>
<td>VCC + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Current sense output current</td>
<td>Vsen</td>
<td></td>
<td>Internally limited</td>
<td>A</td>
</tr>
<tr>
<td>H–bridge outputs DC voltage</td>
<td>OUT1,2</td>
<td>−0.3</td>
<td>Vbat + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>H–bridge outputs DC current</td>
<td>OUT1,2</td>
<td>−20</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>NCV7535 junction temperature</td>
<td></td>
<td>−40</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Qrev, QH1/2, QL1/2 junction temperature</td>
<td></td>
<td>−55</td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Board temperature</td>
<td></td>
<td>−40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. RECOMMENDED BOARD OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Rating</th>
<th>External Pin</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>Vbat</td>
<td>6</td>
<td>28</td>
<td>V</td>
</tr>
<tr>
<td>Digital Supply voltage</td>
<td>VCC</td>
<td>5 V ± 5% (on–board supply)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Digital inputs/outputs voltage</td>
<td>CSB, SCLK, SDI, SDO, EN, PWM</td>
<td>0</td>
<td>VCC</td>
<td>V</td>
</tr>
<tr>
<td>Current sense output voltage</td>
<td>Vsen</td>
<td></td>
<td>Generated internally</td>
<td></td>
</tr>
<tr>
<td>Current sense output current</td>
<td>Vsen</td>
<td></td>
<td>Internally limited</td>
<td>A</td>
</tr>
<tr>
<td>H–bridge outputs voltage</td>
<td>OUT1,2</td>
<td>0</td>
<td>Vbat</td>
<td>V</td>
</tr>
<tr>
<td>H–bridge outputs current</td>
<td>OUT1,2</td>
<td>Limited by max. junction/board temperature</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>NCV7535 junction temperature</td>
<td></td>
<td>−40</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Qrev, QH1/2, QL1/2 junction temperature</td>
<td></td>
<td>−55</td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Board temperature</td>
<td></td>
<td>−40</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
NCV7535 is a monolithic SPI controlled H-bridge pre-driver for a DC-motor with enhanced feature set useful in automotive systems.

The evaluation board contains all the components necessary for NCV7535 application: a control MCU, USB interface, +5 V LDO supply for VCC and current sensing operational amplifier.

An external MCU can be connected through H connector to control all functions and settings of NCV7535.

Board Configuration

The NCV7535 evaluation board allows two modes of operation:

- **Standalone / full-demonstration using on-board MCU**
 - All the slide switches (incl. SW_SA) have to be set to the position as shown in Figure 3.
 - MCU is controlled via mini USB connector “USB”
 - NCV7535 digital signals are still accessible via “H” connector

- **NCV7535 evaluation only; external control**
 - All the switches (incl. SW_SA) have to be set to the position as shown in Figure 3.
 - External SPC control has to be connected via “H” USB connector

![Figure 3. NCV7535 Evaluation Board Picture, Top Side](image-url)
Figure 4. NCV7535 Evaluation Board Picture, Bottom Side
FUNCTIONAL DESCRIPTION

Power Supply
The output stage of NCV7535 pre-driver is supplied via VS pin. Normally, this pin is directly connected to the H-bridge supply. N-MOSFET Qrev ensures battery-reverse protection.

By default, H-bridge power supply is buffered by three 220 µF capacitors covering high current peaks caused by the inrush current or PWM operation.

The VS pin of NCV7535 can be filtered using a non-zero value of Rs resistor.

Current Sensing Amplifier
NCV7535 evaluation board contains low-side sense resistors and operational amplifier for H-bridge current sensing.

The power MOSFETs as well as sensing resistor Rsen value are selected according to maximum application DC current. Higher current is possible for limited time as long as the junction temperatures are not exceeded.

The current-sensing amplifier has a fixed gain of 40 and the output is referenced to GND. The maximum offset of used operational amplifier (NCV20061) is ±4 mV, which is equivalent to the load current of 0.8 A (with Rsen = 5 mΩ). To sense low currents (< 1 A), a positive offset can be introduced via R34. MCU can then cancel the input offset by measuring Vsens voltage with H-bridge disabled. The resulting A–V ratio (with Rsen = 5 mΩ) is:

\[
Vsens = 0.2 \times I_{out} + 0.2 \, \text{V} \quad \text{(can be calibrated on fly)}
\]

Operating States
NCV7535 provides two static operating modes selectable via SPI registers and EN pin.

After power-up, the device enters low-power Standby mode with the H-bridge disabled.

To enter the Active mode, EN pin has to be pulled high and CONTROL_0.MODE bit set. Typically, EN pin can be controlled the MCU reset signal to ensure the motor is running under MCU supervision only.

Additional details of the NCV7535 operation and parameters can be found in the corresponding datasheet [1].

Figure 5. NCV7535 State Diagram

GETTING STARTED

The board supports three ways of NCV7535 device control:

1. PC control – the user have full control over NCV7535 settings using PC connected to the board via USB.
2. Standalone mode – PWM duty-cycle (motor speed) can be changed via on-board potentiometers. No other device setting is available.
3. External MCU control – external MCU controls the all the NCV7535 settings directly via SPI and PWM pins.

PC Control Mode
1. Move slide switches “SW_xx” to the left position (see Figure 3.)
2. Move slide switch “SW_SA” to the left position
3. Connect the load to “OUT1/2” bush connectors
4. Connect the main supply to “Vbat” and “GND” bush connectors
5. Connect the board by Mini–USB connector to the PC, wait for drivers installation, if needed
6. Run the “Motor GUI” software
7. In the startup window select “NCV7535” controller
8. The software should connect to the board. If the connection was successful, the controller window opens.
9. To control the load, use “Hardware Controls” and “Demo” (See Figures 6 and 8). Here is an example of the settings:
 a. Check “PWM On/Off” in “Hardware Controls”,
 b. Set “Speed Control” to > 0% in “Demo”,
 c. Check “Forward” or “Reverse” in “Demo”

Standalone Mode
1. Move slide switches “SW_xx” to the left position (see Figure 3.)
2. Move slide switch “SW_SA” to the right position
3. Connect the load to “OUT1/2” bush connectors
4. Connect the main supply to “Vbat” and “GND” bush connectors
5. “LED_SA” indicates the Standalone mode
6. The motor speed (PWM duty-cycle) can be changed by “Pot1”

When changing the mode, the supply of the board needs to be disconnected of MCU reset by “SW_RST” button.
Figure 6. NCV7535 Controller Window
Assembly Drawings

Figure 7. NCV7535 EVB PCB Top Assembly Drawing

Figure 8. NCV7535 EVB PCB Bottom Assembly Drawing

Composite Drawings

Figure 9. NCV7535 EVB PCB Top Composite Drawing

Figure 10. NCV7535 EVB PCB Bottom Composite Drawing

References

ON Semiconductor reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems information or advice, quality characterization, reliability data or other services provided by ON Semiconductor shall not constitute any representation or warranty by ON Semiconductor, that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design limitations, warranties of fitness for a particular purpose and non-infringement of intellectual property rights.

ON Semiconductor’s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any. For more information and documentation, please visit www.onsemi.com.

LIMITATIONS OF LIABILITY: ON Semiconductor shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if ON Semiconductor is advised of the possibility of such damages. In no event shall ON Semiconductor’s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC d/b/a ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the “board”) is not a finished product and is as such not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and should as such only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

The board is delivered “AS IS” and without warranty of any kind including, but not limited to, that the board is production-worthy, that the functions contained in the board will meet your requirements, or that the operation of the board will be uninterrupted or error free. ON Semiconductor expressly disclaims all warranties, express, implied or otherwise, including without limitation, warranties of fitness for a particular purpose and non-infringement of intellectual property rights.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems information or advice, quality characterization, reliability data or other services provided by ON Semiconductor shall not constitute any representation or warranty by ON Semiconductor, and no additional obligations or liabilities shall arise from ON Semiconductor having provided such information or services.

The boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. Should you purchase or use the board for any such unintended or unauthorized application, you shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by ON Semiconductor to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

LIMITATIONS OF LIABILITY: ON Semiconductor shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if ON Semiconductor is advised of the possibility of such damages. In no event shall ON Semiconductor be liable for any indirect, incidental, punitive, special or consequential damages, including, but not limited to, loss of profit, or reduction of income, loss of business, or loss of use, or any other financial or economic loss, even if ON Semiconductor is advised of the possibility of such damages, in no event shall ON Semiconductor’s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.