Introduction

ON Semiconductor has developed the QFN16EVB evaluation board for its high-performance devices packaged in the 16-pin QFN. This evaluation board was designed to provide a flexible and convenient platform to quickly evaluate, characterize and verify the operation of various ON Semiconductor products. Many QFN16EVBs are dedicated with a device already installed, and can be ordered from www.onsemi.com at the specific device web page.

This evaluation board manual contains:
• Information on 16-lead QFN Evaluation Board
• Assembly Instructions
• Appropriate Lab Setup
• Bill of Materials

This user’s manual provides detailed information on board contents, layout and its use. It should be used in conjunction with an appropriate ON Semiconductor device datasheet located at www.onsemi.com. The datasheet contains the technical device specifications.

Board Layout

The QFN16 Evaluation Board provides a high bandwidth, 50 Ω controlled impedance environment and is implemented in four layers. The first layer or primary trace layer is 0.008″ thick Rogers RO4003 material, and is designed to have equal electrical length on all signal traces from the device under test (DUT) pins to the SMA connectors. The second layer is the 1.0 oz copper ground plane and is primarily dedicated for the SMA connector ground plane. FR4 dielectric material is placed between the second and third layers and between third and fourth layers. The third layer is also 1.0 oz copper plane. A portion of this layer is designated for the device VCC and DUTGND power planes. The fourth layer is the secondary trace layer.

Figure 1. Top and Bottom View of the 16 QFN Evaluation Board
Figure 2. Enlarged Bottom View

Figure 3. Enlarged Bottom View of the Evaluation Board

Figure 4. Evaluation Board Layout, 4 Layer
Evaluation Board Assembly Instructions

The QFN–16 evaluation board is designed for characterizing devices in a 50 Ω laboratory environment using high bandwidth equipment. Each signal trace on the board has a via at the DUT pin, which provides an option of placing a termination resistor on the board bottom, depending on the input/output configuration (see Table 1, Configuration for Device: NB6N11S). Table 4 contains the Bill of Materials for this evaluation board.

The QFN16EVB was designed to accommodate a custom QFN−16 socket. Therefore, some external components are installed on the bottom side of the board.

Solder the Device on the Evaluation Board

The soldering of a device to the evaluation board can be accomplished by hand soldering or solder reflow techniques using solder paste. Make sure pin 1 of the device is located properly and all the pins are aligned to the footprint pads. Solder the QFN–16 device to the evaluation board. As mentioned earlier, many QFN16EVBS are dedicated with a device already installed, and can be ordered from onsemi.com at the specific device web page.

Connecting Power and Ground

On the top side of the evaluation board, solder the four surface mount test point clips (anvils) to the pads labeled VCC, VEE/DUTGND, SMAGND, and ExPad. ExPad is connected to the exposed flag of the QFN package. For proper operation, the exposed flag is typically recommended to be tied to VEE/DUTGND, the negative supply of the device.

The positive power supply connector is labeled VCC. Depending on the device, the negative power supply nomenclature is labeled either GND or VEE. To help avoid confusion with the use of this board, the negative supply connector is labeled VEE/DUTGND. SMAGND is the ground for the SMA connectors and is not to be confused with the device ground, VEE/DUTGND. SMAGND and DUTGND can be connected in single-supply applications. The power pin layout and typical connection of the evaluation board is shown in Figure 6.

It is recommended to add bypass capacitors to reduce unwanted noise from the power supplies. Connect 0.1 μF capacitors from VCC and VEE/DUTGND to SMA_GND.

Output Loading/Termination

ECL/PECL/LVPECL Outputs

Most ECL outputs are open emitter and need to be DC loaded and AC terminated to VCC − 2.0 V via a 50 Ω resistor. If no internal resistors are provided on the device, 0402 chip resistor pads are provided on the bottom side of the evaluation board to terminate the ECL driver. Solder the chip resistors to the bottom side of the board between the appropriate input device pads and the ground pads. If internal resistors are provided, the VT pins should be wired to SMAGND. (More information on termination is provided in AND8020).

For standard ECL lab setup and test, a split (dual) power supply is recommended enabling the 50 Ω internal impedance in the oscilloscope, or other measuring instrument, to be used as an ECL output load/termination. By offset, VCC = +2.0 V, SMAGND = VCC − 2.0 V, (SMAGND is the system ground, 0V); VCC is 2.0 V, and VEE/DUTGND is −3.0 V, −1.3 V or −0.5 V; see Table 2, Power Supply Levels).
CML Outputs
Likewise, CML outputs need to be terminated to \(V_{CC} \) via a 50 \(\Omega \) resistor. If no internal resistors are provided on the device, 0402 chip resistor pads are provided on the bottom side of the evaluation board to terminate the CML driver. If internal resistors are provided, the \(V_T \) pins should be wired to \(V_{CC} \).

For CML lab setup and test, operation with negative supply voltages is recommended to enable the 50 \(\Omega \) internal impedance in the oscilloscope, or other measuring instrument, to be used as a CML output termination; \(V_{CC} = 0 \text{ V}, \ SMAGND = 0 \text{ V}, \text{ and } V_{EE/DUTGND} = -5.0 \text{ V}, -3.3 \text{ V}, -2.5 \text{ V}, \text{ or } -1.8 \text{ V} \).

LVDS Outputs
LVDS outputs are typically terminated with 100 \(\Omega \) across the Q/Q output pair. The 100 \(\Omega \) can be added on the QFN16EVB, but it is not provided on the board, since there are several user dependent LVDS output measurement techniques.

For LVDS lab setup and test, a single supply is typically used, i.e. \(V_{CC} = 3.3 \text{ V} \) and DUTGND = 0 V.

Installing the SMA Connectors
Each configuration indicates the number of SMA connectors needed to populate an evaluation board for a given device. Each input and output requires one SMA connector. Install all the required SMA connectors onto the board and solder the center signal conductor pin to the board on J1 through J16. Please note that the alignment of the signal connector pin of the SMA connector to the metal trace on the board can influence lab results. The launch and reflection of the signals are largely influenced by imperfect alignment and soldering of the SMA connector.

Validating the Assembled Board
After assembling the evaluation board, it is recommended to perform continuity checks on all soldered areas before commencing with the evaluation process. Time Domain Reflectometry (TDR) is another highly recommended validation test.
Table 1. CONFIGURATION FOR DEVICE: NB6N11S

<table>
<thead>
<tr>
<th>Device Pin #</th>
<th>J1</th>
<th>J2</th>
<th>J3</th>
<th>J4</th>
<th>J5</th>
<th>J6</th>
<th>J7</th>
<th>J8</th>
<th>J9</th>
<th>J10</th>
<th>J11</th>
<th>J12</th>
<th>J13</th>
<th>J14</th>
<th>J15</th>
<th>J16</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA Connector</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Wire</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>VCC</td>
<td>No</td>
<td>VEE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
<td>VCC</td>
</tr>
</tbody>
</table>

NOTE: DUTGND/VEE = Exposed Pad and must be tied to DUTGND/VEE.

CONFIGURATIONS

![Diagram of power supply configuration for Device NB6N11S](image)

Figure 6. Power Supply Configuration for Device NB6N11S
1. Connect appropriate power supplies to V_{CC}, $V_{EE}/DUTGND$, SMAGND, and ExPad (see Table 2).
2. Connect a signal generator to the input SMA connectors. Setup input signal according to the device data sheet.
3. Connect a test measurement device to the device's output SMA connectors.

NOTE: The test measurement device must contain 50 Ω termination.

Figure 7. Basic Lab Setup (Typical)

Table 2. POWER SUPPLY LEVELS

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Power Supply</th>
<th>V_{CC}</th>
<th>$V_{EE}/DUTGND$</th>
<th>SMAGND</th>
<th>ExPad (typ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDS</td>
<td>2.5 V</td>
<td>+2.5 V</td>
<td>0 V</td>
<td>0 V</td>
<td>$V_{EE}/DUTGND$</td>
</tr>
<tr>
<td>LVDS</td>
<td>3.3 V</td>
<td>+3.3 V</td>
<td>0 V</td>
<td>0 V</td>
<td>$V_{EE}/DUTGND$</td>
</tr>
</tbody>
</table>

Table 3. NB6xxxS, LVDS OUTPUTS POWER SUPPLY CONFIGURATION

<table>
<thead>
<tr>
<th>Device Pin Power Supply Converter</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>$V_{CC} = +3.3$ V</td>
</tr>
<tr>
<td>SMAGND</td>
<td>0 V</td>
</tr>
<tr>
<td>DUTGND</td>
<td>DUTGND = 0 V</td>
</tr>
</tbody>
</table>

Figure 8. Single Power Supply Connections
<table>
<thead>
<tr>
<th>Components</th>
<th>Manufacturer</th>
<th>Description</th>
<th>Part Number</th>
<th>Qty</th>
<th>Web Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA Connector</td>
<td>Rosenberger</td>
<td>SMA Connector, Side Launch, Gold Plated</td>
<td>32K243−40ME3</td>
<td>8</td>
<td>http://www.rosenberger.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>http://www.rosenbergerna.com</td>
</tr>
<tr>
<td>Surface Mount Test Points</td>
<td>Keystone*</td>
<td>SMT Miniature Test Point</td>
<td>5015</td>
<td>4</td>
<td>http://www.keyelco.com</td>
</tr>
<tr>
<td>Chip Capacitor</td>
<td>AVC Corporation*</td>
<td>0603 0.01 μF ±10%</td>
<td>06035C103KAT2A</td>
<td>na</td>
<td>http://www.avxcorp.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0603 0.1 μF ±10%</td>
<td>0603C104KAT2A</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Chip Resistor</td>
<td>Panasonic*</td>
<td>0402 50 Ω ±1% Precision Thick Film Chip Resistor</td>
<td>ERJ−2RKF49R9X</td>
<td>na</td>
<td>http://www.panasonic.com</td>
</tr>
<tr>
<td>Evaluation Board</td>
<td>ON Semiconductor</td>
<td>QFN 16 Evaluation Board</td>
<td>QFN16EVB</td>
<td>1</td>
<td>http://www.onsemi.com</td>
</tr>
<tr>
<td>Device Samples</td>
<td>ON Semiconductor</td>
<td>QFN 16 Package Device</td>
<td>NB6N11SMNG</td>
<td>1</td>
<td>http://www.onsemi.com</td>
</tr>
</tbody>
</table>

*Components are available through most distributors, i.e. www.newark.com, www.digikey.com
Figure 9. Gerber Files

Top Layer

Second Layer (SMA_GND Plane)
Figure 10. Gerber Files

Third Layer (DUT_GND Trace)

Bottom Layer
The evaluation board/kit (research and development board/kit) (hereinafter the “board”) is not a finished product and is as such not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and should as such only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

ON Semiconductor reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems information or advice, quality characterization, reliability data or other services provided by ON Semiconductor shall not constitute any representation or warranty by ON Semiconductor, that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design limitation, warranties of fitness for a particular purpose and non-infringement of intellectual property rights.

ON Semiconductor shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if ON Semiconductor is advised of the possibility of such damages. In no event shall ON Semiconductor’s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any. For more information and documentation, please visit www.onsemi.com.