High Brightness LED SEPIC Driver Evaluation Board User's Manual

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Circuit Description

This circuit is intended for driving high power LEDs, such as the Cree XLAMP $^{\text{™}}$ series, Lumileds LUXEON $^{\text{®}}$ Rebel and K2 and OSRAM, Golden and Platinum DRAGON $^{\text{®}}$ as well as the OSTAR $^{\text{®}}$. It is designed for such wide input nominal 12 Vdc applications as automotive and low voltage lighting (12 Vdc/12 Vac). An optional dimming PWM input is included. The circuit is based on NCP3065 operation at 250 kHz in a non-isolated configuration. The primary advantages of this circuit are in the wide input voltage range, wide output voltage range, and in its high efficiency.

A pulse feedback resistor (R8) is used to vary the slope of the oscillator ramp, achieving duty cycle control and steady switching frequency over a wide input voltage range.

Figure 1. NCP3065 Top Side

Key Features

- Buck-Boost Operation
- Wide Input and Output Operation Voltage
- Regulated Output Current
- Dimming
- High Frequency Operation
- Minimal Input and Output Current Ripple
- Open LED Protection
- Output Short Circuit Protection

Minimum Efficiency	70%
--------------------	-----

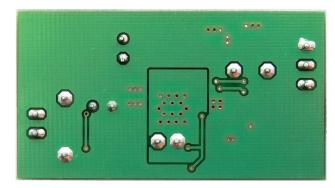


Figure 2. NCP3065 Bottom Side

Device	Application	Input Voltage	Output Power	Topology	I/O Isolation
NCP3065 NCV3065	Solid State, Automotive and Marine Lighting	8-25 V	< 15 W	SEPIC	None

Table 1. Other Specifications

	Output 1	Output 2	Output 3	Output 4
Output Voltage	7.2-23 V	N/A	N/A	N/A
Current Ripple	< 15%	N/A	N/A	N/A
Nominal Current	0.35, 0.7 A	N/A	N/A	N/A
Max Current	1 A	N/A	N/A	N/A
Min Current	N/A	N/A	N/A	N/A

Schematic

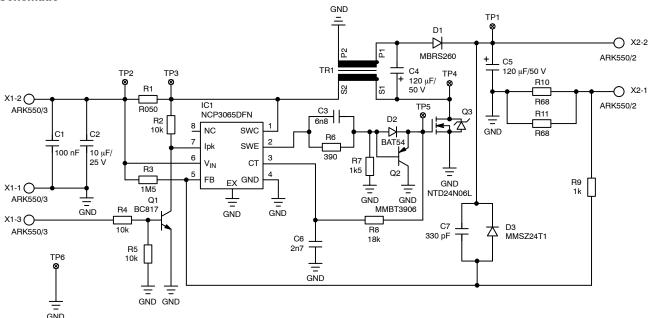


Figure 3. SEPIC Converter Schematic

Design Notes

A SEPIC (single-ended primary inductance converter) is distinguished by the fact that its input voltage range can overlap the output voltage range. The basic schematic is shown in Figure 4.

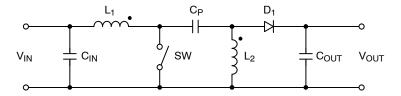


Figure 4. Generalized SEPIC Schematic

When switch SW is ON, energy from the input is stored in inductor L_1 . Capacitor C_P is connected in parallel to L_2 , and energy from C_P is transferred to L_2 . The voltage across L_2 is the same as the C_P voltage, which is the same as the input voltage. At this time, the diode is reverse biased and C_{OUT} supplies output current.

If the switch SW is OFF, current in L_1 flows through C_P and D_1 then continues to the load and C_{OUT} . This current recharges C_P for the next cycle. Current from L_2 also flows through D_1 to the load and C_{OUT} that is recharging for the next cycle.

Inductors L_1 and L_2 could be uncoupled, but then they must be twice as large as if they are coupled. Another advantage is that if coupled inductors are used there is very small input current ripple.

Values of coupled inductors are set by these equations:

$$D = \frac{V_{OUT} \min}{V_{OUT} \min + V_{IN} \min} = \frac{7.2}{7.2 + 8} = 0.47$$
 (eq. 1)

$$\Delta I = r \times I_{OUT} \frac{D}{1 - D} = 0.8 \times 0.7 \times \frac{0.47}{1 - 0.47} =$$
= 0.51 A

$$\begin{split} L_{1,2} &= \frac{V_{IN}\,\text{min}\times D}{2\times f\times \Delta I} = \frac{8\times 0.47}{2\times 250\times 10^3\times 0.51} = \\ &= 15.0\,\mu\text{H} \end{split} \tag{eq. 3}$$

where r is the maximum inductor current ripple factor.

For a 0.35 A output current variant of this circuit, the values of inductors are

$$\Delta I = r \times I_{OUT} \frac{D}{1 - D} = 0.95 \times 0.35 \times \frac{0.47}{1 - 0.47} =$$

= 0.3 A

$$\begin{split} L_{1,2} &= \frac{V_{IN} min \times D}{2 \times f \times \Delta I} = \frac{8 \times 0.47}{2 \times 250 \times 10^3 \times 0.3} = \\ &= 25.1 \ \mu H \end{split} \tag{eq. 5}$$

The nearest coupled inductor value for the 0.7 A variant is 15 μ H. A variant with 0.35 A output current needs to use inductors with value 22 μ H.

The output current is set by R10 (R11). So this resistor can be calculated by the formula:

$$R10 = \frac{0.235}{I_{OUT}} = 350 \text{ m}\Omega$$
 (eq. 6)

To protect the circuit against high output voltage under light loads or a fault condition, the output voltage is clamped by a Zener diode (D3) to approximately 24.5 V. Capacitor C7 is used to stabilize feedback, but it impacts line regulation. R3 fixes the line regulation error caused by C7.

External power MOSFET is driven by internal NPN Darlington transistor, external diode D2 and PNP transistor Q2. Compensated divider C3, R6 and R7 is used to reduce gate-source voltage, mainly for high input voltage and to keep sharp edges. Maximum gate-source voltage can be calculated by this formula:

$$V_{GS} \max = (V_{IN} - V_{CE} - V_{D2}) \times \frac{R7}{R6 + R7} =$$

$$= (27 - 1.4 - 0.4) \times \frac{1500}{390 + 1500} = 18.4 \text{ V}$$

Maximum MOSFET current can be calculated in this way:

$$\begin{split} I_{\text{Q4max}} &= \left(1 + \frac{r}{2}\right) \times I_{\text{OUT}} \times \frac{V_{\text{OUT}} \, \text{max}}{V_{\text{IN}} \, \text{min}} = \\ &= \left(1 + \frac{0.8}{2}\right) \times 0.7 \times \frac{23}{8} = 2.5 \, \text{A} \end{split} \tag{eq. 8}$$

To minimize power MOSFET conductance losses, it is recommended to select a transistor with small R_{DSON} . To minimize switching losses, it is recommended to select a transistor with small gate charge. Power MOSFET must also have a breakdown voltage higher than:

$$V_{FETPK} = V_{IN} + V_{OUT} = 18 + 23 = 41 V$$
 (eq. 9)

Cycle by cycle switch current protection is set by R1 at

$$I_{PKset} = \frac{0.2}{R1} \tag{eq. 10}$$

A suitable value is higher than maximum switch current.

$$R1 < \frac{0.2}{I_{Q1_{max}}} = \frac{0.2}{2.5} = 80 \text{ m}\Omega \tag{eq. 11}$$

Diode D1 maximum voltage is determined by this equation:

$$V_{D1max} = V_{IN} + V_{OUT} = 18 + 32 = 41 V$$
 (eq. 12)

and with current

$$I_{D1} = I_{OUT} = 0.7 A$$
 (eq. 13)

The C4 coupling capacitor is selected based on input voltage and on current

D max =
$$\frac{V_{OUT} max}{V_{OLIT} max + V_{IN} min} = \frac{23}{23 + 8} = 0.74$$
 (eq. 14)

$$\begin{split} I_{\text{C4RMS}} &= \frac{V_{\text{OUT}} \times I_{\text{OUT}}}{V_{\text{IN}}} \sqrt{\frac{1 - D \max}{D \max}} = \\ &= \frac{23 \times 0.7}{8} \sqrt{\frac{1 - 0.74}{0.74}} = 1.2 \text{ A} \end{split}$$
 (eq. 15)

and its minimal value is

$$\begin{aligned} \text{C4} &> \frac{\text{I}_{\text{OUT}} \times \text{D} \, \text{min}}{0.05 \times \text{V}_{\text{IN}} \, \text{min} \times \text{f}} = \\ &= \frac{0.7 \times 0.47}{0.05 \times 8 \times 250 \times 10^3} = 2 \, \mu \text{F} \end{aligned} \tag{eq. 16}$$

The output capacitor's current is

$$I_{C5} = I_{OUT} \sqrt{\frac{D \max}{1 - D \max}} = 0.7 \sqrt{\frac{0.74}{1 - 0.74}} =$$

$$= 1.2 \text{ A}$$
(eq. 17)

$$\begin{split} C5 &> \frac{\frac{V_{OUT}^{min}}{V_{IN}^{min}} \times I_{OUT} \times D \, min}{f \times r \times V_{OUT}^{min}} = \\ &= \frac{\frac{7.3}{8} \times 0.7 \times 0.47}{250 \times 10^3 \times 0.1 \times 7.3} = 1.7 \, \mu F \end{split}$$
 (eq. 18)

The value could be much larger for higher stability, but a higher value impacts the dimming function at low duty cycle.

The resistor R8 is used to stabilize feedback loop. Used value is compromise for whole input and output voltage range. If this circuit is used for specified load only, it should be tuned by this resistor to better efficiency and line regulation.

X1-3 input is used for dimming. The dimming signal level is 2–10 V. The recommended dimming frequency is about 200 Hz. For frequencies below 100 Hz the human eye will see the flicker. The dimming function utilizes the NCP3065's peak current protection input. The second way to achieve this is to use the FB pin. See Figure 12.

Conclusion

This circuit is ideal in applications with strings of two to six LED chips powered from a power supply with wide input range (8-20 V). The advantages of this circuit include its small size, low price, wide input and output voltage ranges, and very small input current ripple.

PC BOARD

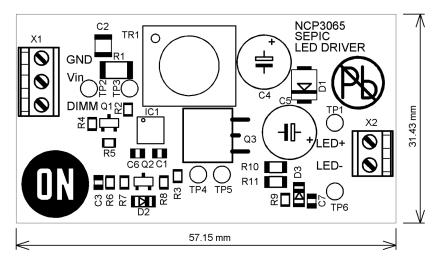


Figure 5. Components Position on PCB

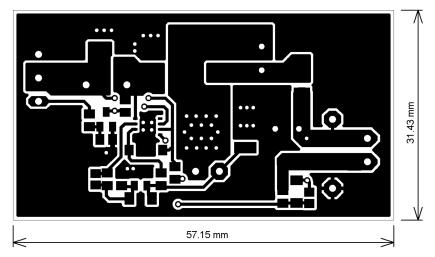


Figure 6. PCB's Top Side

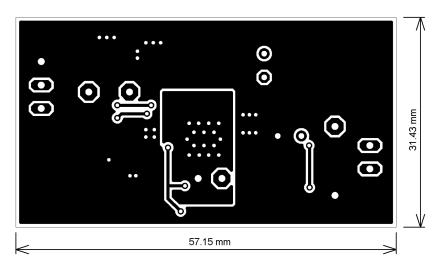


Figure 7. PCB's Bottom Side

Table 2. BILL OF MATERIALS

Designator	Qty	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Lead Free
R3	1	Resistor SMD	1M5	1%	0805	Vishay	CRCW08051M50FKEA	Yes	Yes
R9	1	Resistor SMD	1k	1%	0805	Vishay	CRCW08051K00FKEA	Yes	Yes
R7	1	Resistor SMD	1k5	1%	0805	Vishay	CRCW08051K50FKEA	Yes	Yes
C6	1	Ceramic Capacitor SMD	2n7	5%	0805	Murata	GCM2165C1H272JA16D	Yes	Yes
C3	1	Ceramic Capacitor SMD	6n8	10%	0805	Kemet	C0805C682K5RAC	Yes	Yes
R2, R4, R5	3	Resistor SMD	10k	1%	0805	Vishay	CRCW080510K0FKEA	Yes	Yes
C2	1	Ceramic Capacitor SMD	10 μF/50 V	+80% / -20%	1210	Murata	GRM32NF51E106ZA01L	Yes	Yes
R8	1	Resistor SMD	27k	1%	0805	Vishay	CRCW080527K0FKEA	Yes	Yes
C1	1	Ceramic Capacitor SMD	100 nF	5%	0805	Kemet	C0805C104J5RAC	Yes	Yes
C4, C5	2	Ceramic Capacitor SMD	120 μF/50 V	20%	8x15	Koshin	KZH-50V121MG4	Yes	Yes
C7	1	Capacitor	330 pF	5%	0805	Kemet	C0805C331J5GAC-TU	Yes	Yes
R6	1	Resistor SMD	390R	1%	0805	Vishay	CRCW0805390RFKEA	Yes	Yes
X2	1	Inlet Terminal Block	DG350-3.50-02	-	_	Degson	DG350-3.50-02	Yes	Yes
X1	1	Outlet Terminal Block	DG350-3.50-03	-	-	Degson	DG350-3.50-03	Yes	Yes
D2	1	Schottky Diode 30 V	BAT54HT1G	-	SOD-323	ON Semiconductor	BAT54HT1G	No	Yes
Q1	1	General Purpose Transistor NPN	BC817-40LT1G	-	SOT-23	ON Semiconductor	BC817-40LT1G	No	Yes
D1	1	Surface Mount Schottky Power Rectifier	MBRS260T3G	-	SMB	ON Semiconductor	MBRS260T3G	No	Yes
Q2	1	PNP General Purpose Transistor	MMBT3906LT1G	-	SOT-23	ON Semiconductor	MMBT3906LT1G	No	Yes
D3	1	Zener Diode 500 mW 24 V	MMSZ24T1G	5%	SOT-123	ON Semiconductor	MMSZ24T1G	No	Yes
IC1	1	Constant Current Switching Regulator	NCV3065MNTXG	-	DFN	ON Semiconductor	NCV3065MNTXG	No	Yes
Q3	1	Power MOSFET 24 Amps, 60 V, Logic Level, N-Channel	NTD24N06LT4G	-	DPAK	ON Semiconductor	NTD24N06LT4G	No	Yes
R1	1	Resistor SMD	0R050	1%	2010	Welwyn	LR2010-R05FW	Yes	Yes
R10, R11	2	Resistor SMD	0R68	5%	1206	Tyco Electronics	RL73K2BR68JTD	Yes	Yes
TP1, TP2, TP3, TP4, TP5, TP6	6	Test Point	Terminal, PCB Black PK100	-	1.02 mm	Vero	20-2137	Yes	Yes
TR1	1	Transformer for 0.35 A Version	PF0553.223	-	-	Pulse	PF0553.223	No	Yes
TR1	1	Transformer for 0.7 A Version	PF0553.153	-	-	Pulse	PF0553.153	No	Yes

MEASUREMENTS

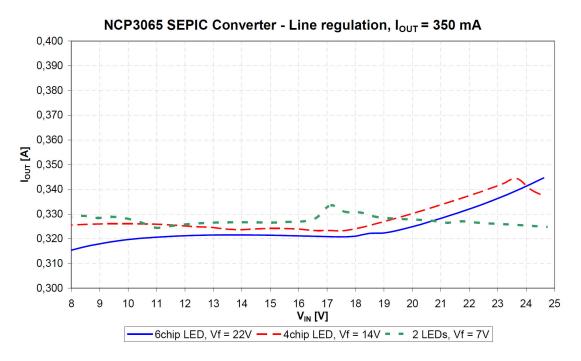


Figure 8. Line Regulation for I_{OUT} = 350 mA

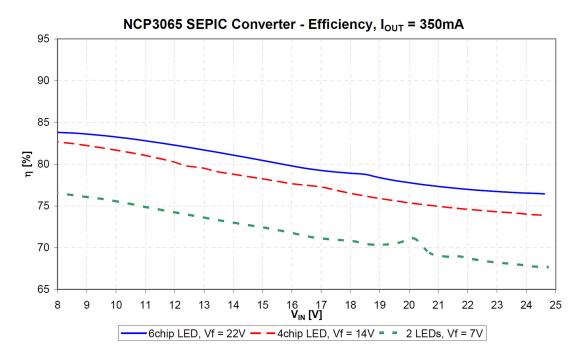


Figure 9. Efficiency for I_{OUT} = 350 mA

MEASUREMENTS

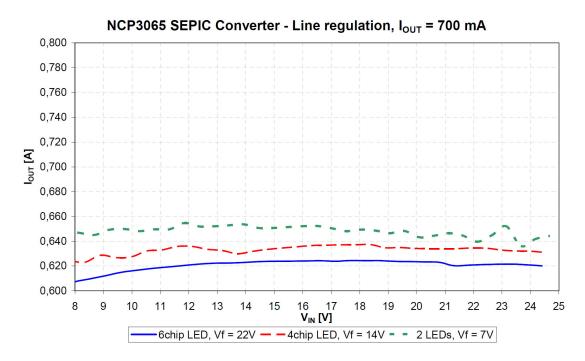


Figure 10. Line Regulation for I_{OUT} = 700 mA

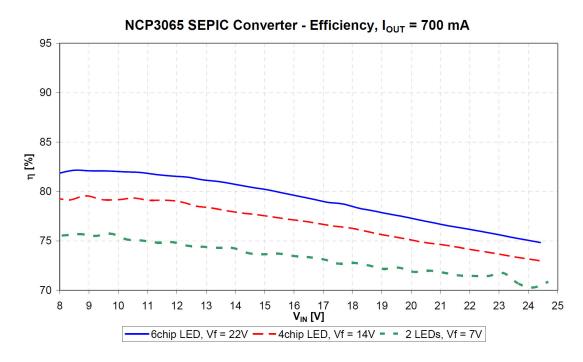


Figure 11. Efficiency for $I_{OUT} = 700 \text{ mA}$

MEASUREMENTS

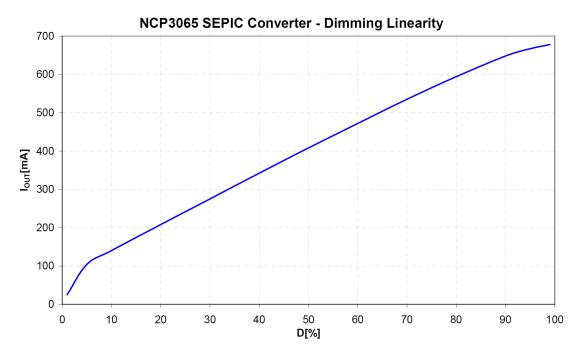


Figure 12. Dimming Linearity, Dimming Frequency 200 Hz

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by **onsemi** shall not constitute any representation or warranty by **onsemi**, and no additional obligations or liabilities shall arise from **onsemi** having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by **onsemi** to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: **onsemi** shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if **onsemi** is advised of the possibility of such damages. In no event shall **onsemi**'s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per **onsemi**'s standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com/design/resources/technical-documentation on the first of the state of the state

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales