NCV7425EVB

NCV7425 LIN Transceiver with Voltage Regulator and Reset Pin Evaluation Board User’s Manual

Introduction
This document describes the NCV7425EVB board for the ON Semiconductor NCV7425 LIN Transceiver with Voltage Regulator and Reset pin. The functionality and major parameters can be evaluated with the NCV7425EVB board.

The NCV7425 is a fully featured local interconnect network (LIN) transceiver designed to interface between a LIN protocol controller and the physical bus.

The NCV7425 LIN device is a member of the in-vehicle networking (IVN) transceiver family of ON Semiconductor that integrates a LIN v2.1 physical transceiver and a low-drop voltage regulator. It is designed to work in harsh automotive environment and is submitted to the TS16949 qualification flow.

Evaluation Board Features
• One-row Pin Header Connecting to all Circuit Signals Enables Easy Insertion of the Evaluation Board into a more Complex Application Setup. The Header can be Alternatively Assembled either Perpendicular or Parallel with the Board Plane
• Oscilloscope Test-points on All Circuit Signals
• Reverse Protection and Decoupling on the Main (Battery) Supply
• Decoupling on VCC Regulator Output
• Additional Pull-up Resistor on the RSTN Open-drain Output
• Filtering Circuit on the Switch-monitoring WAKE Input
• On-board Local Wakeup Switch
• LIN-bus Termination and Optional ESD Protection
• Good Thermal Connection of the Circuit’s Exposed Pad to the Bottom Ground Plane

NCV7425 Key Features
• LIN-Bus Transceiver
 • LIN Compliant to Specification Revision 2.1 (Backward Compatible to Versions 2.0 and 1.3) and SAE J2602
 • Bus Voltage ±45 V
 • Transmission Rate up to 20 kBaud
 • Integrated Slope Control for Improved EMI Compatibility
• Protection
 • Thermal Shutdown
 • Indefinite Short-circuit Protection on Pins LIN and WAKE Towards Supply and Ground
 • Load Dump Protection (45 V)
 • Bus Pins Protected against Transients in an Automotive Environment
 • ESD Protection Level for LIN, INH, WAKE and Vbb up to ±10 kV
• Voltage Regulator
 • Two Device Versions: Output Voltage 3.3 V or 5 V for Loads up to 150 mA
 • Under-voltage Detector with a Reset Output to the Supplied Microcontroller
 • Over-current Limitation
 • INH Output for Auxiliary Purposes (Switching of an External Pull-up or Resistive Divider towards Battery, Control of an External Voltage Regulator etc.)

Typical Applications
• Automotive
• Industrial Network
Getting Started

Master/Slave Configuration
The NCV7425 evaluation board can be configured as Master or Slave node. Furthermore, Master node LIN bus pull-up resistance (R\text{LIN}) can be tied to VBB supply line or to INH pin (See the figures below).

The EMC immunity of the Master-node device can be further enhanced by adding a capacitor between the LIN output and ground (C\text{LIN}). The optimum value of this capacitor is determined by the length and capacitance of the LIN bus, the number and capacitance of Slave devices, the pull-up resistance of all devices (Master and Slave), and the required time constant of the system.

Basic Connection
A simple LIN network configuration is shown in the figure below. One Master and one Slave node is required (Master/Slave Configuration).
Functional Description

Overall Functional Description

NCV7425 is designed as a master or slave node for the LIN communication interface with an integrated 3.3 V or 5 V voltage regulator having a current capability up to 150 mA for supplying any external components (microcontroller, CAN node, etc.).

NCV7425 contains the LIN transmitter, LIN receiver, voltage regulator, power-on-reset (POR) circuits and thermal shutdown (TSD). The LIN transmitter is optimized for the maximum specified transmission speed of 20 kBaud with EMC performance due to reduced slew rate of the LIN output.

The junction temperature is monitored via a thermal shutdown circuit that switches the LIN transmitter and voltage regulator off when temperature exceeds the TSD trigger level.

NCV7425 has four operating states (normal mode, low slope mode, stand-by mode, and sleep mode) that are determined by the input signals EN, WAKE, STB, and TxD.

Operating States

NCV7425 provides four operating states, two modes for normal operation with communication, one stand-by without communication and one low power mode with very low current consumption - see Figure 6 and Table 1.

Table 1. MODE SELECTION

<table>
<thead>
<tr>
<th>Mode</th>
<th>Vcc</th>
<th>RxD</th>
<th>INH</th>
<th>LIN Transceiver</th>
<th>30 kΩ on LIN</th>
<th>RSTN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal – Slope (Note 1)</td>
<td>ON</td>
<td>Low = Dominant State High = Recessive State</td>
<td>High if STB = High during State Transition; Floating Otherwise</td>
<td>Normal Slope</td>
<td>ON</td>
<td>High</td>
</tr>
<tr>
<td>Normal – Low Slope (Note 2)</td>
<td>ON</td>
<td>Low = Dominant State High = Recessive State</td>
<td>High if STB = High during State Transition; Floating Otherwise</td>
<td>Low Slope</td>
<td>ON</td>
<td>High</td>
</tr>
<tr>
<td>Stand-by (Note 3)</td>
<td>ON</td>
<td>Low after LIN Wakeup, Floating</td>
<td>OFF</td>
<td>Controlled by VCC Under-voltage Monitor</td>
<td>OFF</td>
<td>Low</td>
</tr>
<tr>
<td>Sleep</td>
<td>OFF</td>
<td>Floating</td>
<td>OFF</td>
<td>OFF</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

1. The normal slope mode is entered when pin EN goes HIGH while TxD is in HIGH state during EN transition.
2. The low slope mode is entered when pin EN goes HIGH while TxD is in LOW state during EN transition. LIN transmitter gets on only after TxD returns to HIGH after the state transition.
3. The stand-by mode is entered automatically after power-up.
4. In Stand-by and Sleep mode, the High state is achieved by internal pull-up resistor to VCC.

Figure 6. NCV7425 State Diagram

Additional details of the NCV7425 operation and parameters can be found in the corresponding datasheet [1].

http://onsemi.com
NCV7425EVB

Schematic

![Schematic Image]

Figure 7. NCV7425 LIN Transceiver with Voltage Regulator and Reset Pin Evaluation Board Schematic

Bill of Materials

Table 2. NCV7425 Evaluation Board Bill of Materials

<table>
<thead>
<tr>
<th>Designator</th>
<th>Description</th>
<th>Value</th>
<th>Footprint</th>
<th>Manufacturer</th>
<th>Manufacturer Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Capacitor SMD</td>
<td>1.0 nF</td>
<td>CAP0805</td>
<td>PHYCOMP</td>
<td>2238 580 15623</td>
</tr>
<tr>
<td>R1, R2</td>
<td>Resistor SMD</td>
<td>2.0 kΩ</td>
<td>R1206</td>
<td>WELWYN</td>
<td>WCR 1206 2K 2%</td>
</tr>
<tr>
<td>R3, R5</td>
<td>Resistor SMD</td>
<td>10 kΩ</td>
<td>R0805</td>
<td>MULTICOMP</td>
<td>MC 0.1 W 0805 1% 10K</td>
</tr>
<tr>
<td>C7</td>
<td>Capacitor SMD X7R</td>
<td>10 μF</td>
<td>CAP1206</td>
<td>KEMET</td>
<td>C1206C106K8RAC</td>
</tr>
<tr>
<td>C5</td>
<td>Capacitor SMD X7R</td>
<td>10 μF</td>
<td>CAP0603</td>
<td>MULTICOMP</td>
<td>MC 0.1 W 0805 1% 33K</td>
</tr>
<tr>
<td>C3</td>
<td>Electrolytic Capacitor SMD</td>
<td>10 μF</td>
<td>R0805</td>
<td>MULTICOMP</td>
<td>(Optional)</td>
</tr>
<tr>
<td>R4</td>
<td>Resistor SMD</td>
<td>33 kΩ</td>
<td>R0805</td>
<td>MULTICOMP</td>
<td>(Optional)</td>
</tr>
<tr>
<td>C2</td>
<td>Capacitor SMD (Optional)</td>
<td>100 nF</td>
<td>CAP0603</td>
<td>KEMET</td>
<td>(Optional)</td>
</tr>
<tr>
<td>D1</td>
<td>Diode SMD</td>
<td>0R</td>
<td>R0805</td>
<td>MULTICOMP</td>
<td>(Optional)</td>
</tr>
<tr>
<td>D4</td>
<td>LIN bus ESD protection diode</td>
<td>ESD LIN</td>
<td>SOD323</td>
<td>ON Semiconductor</td>
<td>MRA4003T3G</td>
</tr>
<tr>
<td>L1</td>
<td>Resistor SMD (Optional Ferrite)</td>
<td>0R</td>
<td>R0805</td>
<td>MULTICOMP</td>
<td>(Optional)</td>
</tr>
<tr>
<td>J1</td>
<td>SIL HEADER 12 pins Right Angle</td>
<td>HEADER 1X12</td>
<td>HDR1x12</td>
<td>MOLEX</td>
<td>90121-0772</td>
</tr>
<tr>
<td>D2, D3</td>
<td>Switching Diode SMD</td>
<td>MMDS4148</td>
<td>SOD123</td>
<td>ON Semiconductor</td>
<td>MMDS4148T1G</td>
</tr>
<tr>
<td>U1</td>
<td>LIN Transceiver with 3.3 V or 5 V Voltage Regulator</td>
<td>NCV7425</td>
<td>SOIC16 WB</td>
<td>ON Semiconductor</td>
<td>3.3 V: NCV7425DW0R2G 5 V: NCV7425DW5R2G</td>
</tr>
<tr>
<td>SCOPEGND</td>
<td>SCOPEGND; Wire Bridge</td>
<td>SCOPEGND</td>
<td>SCOPEGND</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>SW1</td>
<td>SWITCH SMD SPNO 6 x 6 mm</td>
<td>SMD SWITCH</td>
<td>PB300</td>
<td>TYCO ELECTRONICS</td>
<td>FSM2JSMA</td>
</tr>
<tr>
<td>FT1, FT2, FT3, FT4</td>
<td>Rubber feet 12.7 x 12.7 x 5.8</td>
<td>SUPPORT FEET</td>
<td>FEET 12.7 x 12.7</td>
<td>3M</td>
<td>SJ5018BLACK</td>
</tr>
<tr>
<td>TP1, TP2, TP4, TP6, TP7, TP8, TP9, TP10, TP11, TP12</td>
<td>Testpin 200 SER. Hole 1.0 Black</td>
<td>TP S200 H1.0 BLACK</td>
<td>TESTPIN2</td>
<td>VERO</td>
<td>20-2137</td>
</tr>
</tbody>
</table>
NCV7425EVB

PCB Drawings

Assembly Drawings

Figure 8. NCV7425EVB PCB Top Assembly Drawing

Figure 9. NCV7425EVB PCB Bottom Assembly Drawing

Composite Drawings

Figure 10. NCV7425EVB PCB Top Composite Drawing

Figure 11. NCV7425EVB PCB Bottom Composite Drawing (Mirrored)

PCB Preview

Figure 12. NCV7425EVB PCB Top Side View

Figure 13. NCV7425EVB PCB Bottom Side View
References

ON Semiconductor reserves the right to make changes without further notice to any board. You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems, information or advice, quality characterization, reliability data or other services provided by ON Semiconductor shall not constitute any representation or warranty by ON Semiconductor, that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design limitations, warranties of fitness for a particular purpose and non-infringement of intellectual property rights.

LIMITATIONS OF LIABILITY: ON Semiconductor shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if ON Semiconductor is advised of the possibility of such damages. In no event shall ON Semiconductor’s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

For more information and documentation, please visit www.onsemi.com.