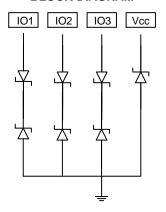

ESD7124

4-Channel Low Capacitance Dual-Voltage ESD and Surge Protection Array

Features

- 3 Channels of Low Voltage ESD Protection
- 1 Channel of High Voltage ESD Protection
- Provides ESD Protection to IEC61000-4-2 Level 4: ±25 kV Contact Discharge
- IEC 61000-4-5 (lighting)
- Low Channel Input Capacitance
- High Voltage Zener Diode Protects Supply Rail up to 100 A (8/20 μs)
- These Devices are Pb-Free and are RoHS Compliant

APPLICATION DIAGRAM


ON Semiconductor®

http://onsemi.com

UDFN-6 D4 SUFFIX CASE 517CS

BLOCK DIAGRAM

MARKING DIAGRAM

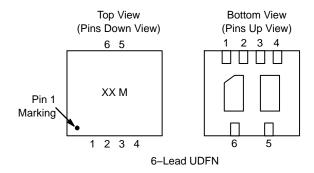
AD = Specific Device Code

M = Date Code

■ = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
ESD7124MUTBG	UDFN-6	3000/Tape &
	(Pb-Free)	Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ESD7124

Table 1. PIN DESCRIPTIONS

	4-Channel, 6-Lead, UDFN-8 Package						
Pin	Name	Туре	Description				
1	V _{CC}	HV V _{DD}	HV ESD Channel				
2	CH1	I/O	LV Low-capacitance ESD Channel				
3	CH2	I/O	LV Low-capacitance ESD Channel				
4	СНЗ	I/O	LV Low-capacitance ESD Channel				
5	GND		Ground				
6	6 GND		Ground				

PACKAGE / PINOUT DIAGRAMS

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. ELECTRICAL CHARACTERISTICS

	Reverse Working Voltage	Break Voltage	down Vbr (V)	Reverse Current Leakage Ir (μΑ)	Rdyn	Junction Capactance Cj(pF)	
	Vrwm (V)	at 1 mA		at Vrwm Ω		Vr = 0 V, f = 1 MHz	
Device Name	Max	Min	Тур	Max	Тур	Тур	Max
Pin2-4 (LV)	3.3	5.5	6.5	1	1	0.35	0.5
Pin1 (HV)	12	13.3	14	1			

		oltage Vc (V) x 20 μs		Ratings x 20 μs
	lpp = 1 A	lpp = 16 A	lpp (A)	Vc @ Max Ipp (V)
Device Name	Тур	Тур	Max	Max
Pin1 (HV)	15	16	100	27
Pin2-4 (LV)	9.5	1		

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Clamping Voltage TLP (Note 1) All Devices Pin2-4(LV)	V _C	$I_{PP} = \pm 8 \text{ A}$		16.8		V
See Figures 3 – 6		$I_{PP} = \pm 16 \text{ A}$ } IEC 61000-4-2 Level 4 equivalent ($\pm 8 \text{ kV Contact}, \pm 15 \text{ kV Air}$)		24.9		

^{1.} ANSI/ESD STM5.5.1 – Electrostatic Discharge Sensitivity Testing using Transmission Line Pulse (TLP) Model. TLP conditions: $Z_0 = 50 \ \Omega$, $t_p = 100 \ ns$, $t_r = 4 \ ns$, averaging window; $t_1 = 30 \ ns$ to $t_2 = 60 \ ns$.

ESD7124

TYPICAL CHARACTERISTICS

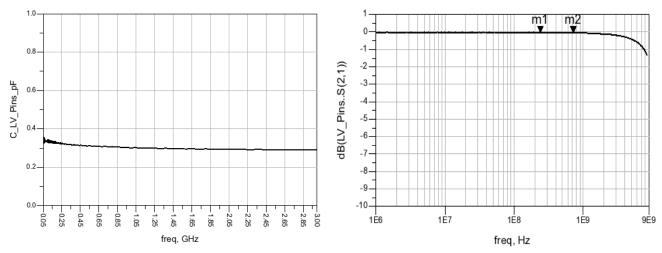


Figure 1. Capacitance Over Frequency

Figure 2. Insertion Loss

Interface	Data Rate (Mb/s)	Fundamental Frequency (MHz)	3 rd Harmonic Frequency (MHz)	ESD7124 Insertion Loss (dB)
USB 2.0	480	240 (m1)	720 (m2)	m1 = 0.031 m2 = 0.047

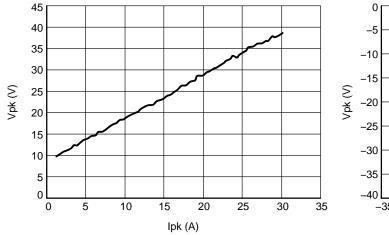


Figure 3. Positive TLP I-V Curve

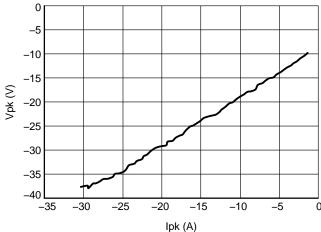


Figure 4. Negative TLP I-V Curve

Transmission Line Pulse (TLP) Measurement

Transmission Line Pulse (TLP) provides current versus voltage (I–V) curves in which each data point is obtained from a 100 ns long rectangular pulse from a charged transmission line. A simplified schematic of a typical TLP system is shown in Figure 5. TLP I–V curves of ESD protection devices accurately demonstrate the product's ESD capability because the 10s of amps current levels and under 100 ns time scale match those of an ESD event. This is illustrated in Figure 6 where an 8 kV IEC 61000–4–2 current waveform is compared with TLP current pulses at 8 A and 16 A. A TLP I–V curve shows the voltage at which the device turns on as well as how well the device clamps voltage over a range of current levels. For more information on TLP measurements and how to interpret them please refer to AND9007/D.

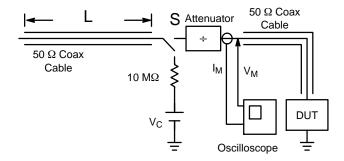


Figure 5. Simplified Schematic of a Typical TLP System

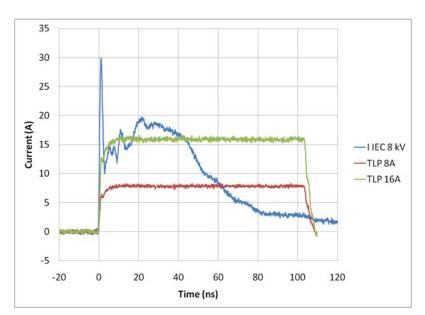


Figure 6. Comparison Between 8 kV IEC 61000-4-2 and 8 A and 16 A TLP Waveforms

C SEATING PLANE

С

□ 0.10

e1

BOTTOM VIEW

0.10 C

e/2

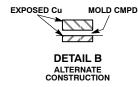
e2

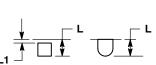
DATE 30 APR 2013

DETAIL B

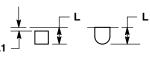
SIDE VIEW

2X D2 -

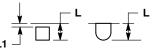

0.05 С


0.05 C

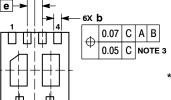
DETAIL A


e1/2

NOTE 4



DETAIL A



ALTERNATE CONSTRUCTIONS

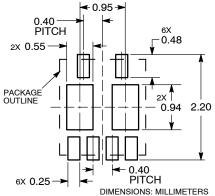
0.07 C A B 0.05 C NOTE 3

SUPPLEMENTAL **BOTTOM VIEW**

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- 714.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION 6 APPLIES TO PLATED TERMINALS
 AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM THE TERMINAL TIP.
 COPLANARITY APPLIES TO THE EXPOSED PAD
- AS WELL AS THE TERMINALS.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.45	0.55			
A1	0.00	0.05			
A3	0.12	REF			
b	0.15	0.25			
D	1.80	BSC			
D2	0.35	0.55			
E	2.00	BSC			
E2	0.74	0.94			
е	0.40	BSC			
e1	0.80	BSC			
e2	0.95	BSC			
L	0.20	0.40			
11		0.15			


GENERIC MARKING DIAGRAM*

XX = Specific Device Code = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present.

RECOMMENDED MOUNTING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON89602E	Electronic versions are uncontrolled except when accessed directly from the Document Reportant Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	UDFN6 1.8X2, 0.4P		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales