EMI Filter for MicroSD Interfaces

Description

The EMI9106 is a combination EMI filter and line termination device with integrated TVS diodes for use on Multimedia Card interfaces. This state-of-the-art device utilizes solid-state, silicon-avalanche technology for superior clamping performance and DC electrical characteristics. The EMI9106 has been optimized for protection of MicroSD interfaces in cellular phones and other portable electronics.

The EMI9106 consists of six circuits that includes series impedance matching resistors as required by the SD specification. TVS diodes are included on each line for ESD protection. An additional TVS diode connection is included for protection of the voltage (Vcc) bus. Termination resistor value of 40 Ω is provided on the SDData0, SDData1, SDData2, SDData3, CMD, and CLK lines.

The TVS diodes provide effective suppression of ESD voltages in excess of ± 15 kV (contact discharge) per IEC 61000–4–2, level 4. The EMI9106 is in a 16–pin, RoHS/WEEE compliant, UDFN 16–pin package. It measures 3.30 x 1.35 x 0.50 mm. The leads are spaced at a pitch of 0.4 mm and are finished with lead–free NiPd.

Features

- Bidirectional EMI/RFI Filtering and Line Termination with Integrated ESD Protection
- Provides ESD Protection to IEC61000-4-2:
 ±15 kV Contact Discharge
- TVS Working Voltage: 3.3 V
- Termination Resistors: 40 Ω
- Typical Capacitance per Line: 12 pF (V_{IN} = 2.5 V)
- Protection and Termination for Six Lines + Vcc
- Solid-state Technology

Applications

- MicroSD Interfaces
- MMC Interfaces
- CDMA, GSM, 3G Cell Phones

Mechanical Characteristics

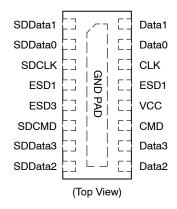
- 0.40 mm, uDFN 16-pin Package
- Nominal Dimensions: 3.30 x 1.35 x 0.50 mm
- Pitch: 0.4 mm
- Pin-lead Finish: NiPd
- RoHS/WEEE Compliance, Lead-free Finish

ON Semiconductor®

http://onsemi.com

UDFN16 CASE 517BE

MARKING DIAGRAM

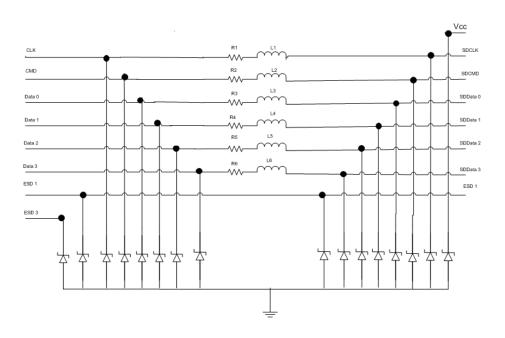


9106 = Specific Device Code M = Single Character Date Code

= Pb-Free Package

(*Note: Microdot may be in either location)

PINOUT DIAGRAM



ORDERING INFORMATION

Device	Package	Shipping [†]
EMI9106MUTAG	UDFN16 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL SCHEMATIC

Table 1. PIN DESCRIPTIONS

Pin	Name	Description	
1	SDData1	Data line #1 input/output	
2	SDData0	Data line #0 input/output	
3	SDCLK	Clock line Input/Output	
4	ESD1	Single ESD	
5	ESD3	Single ESD	
6	SDCMD	Command Line Input/Output	
7	SDData3	Data line #3 input/output	
8	SDData2	Data line #2 input/output	
9	Data2	Data line #2 input/output	
10	Data3	Data line #3 input/output	
11	CMD	Command Line Input/Output	
12	VCC	Power Supply ESD Protection	
13	ESD1	Single ESD	
14	CLK	Clock line Input/Output	
15	Data0	Data line #0 input/output	
16	Data1	Data line #1 input/output	
GND PAD	GND	Ground return to shield	

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Operating Temperature Range	-40 to +85	°C
Storage Temperature Range	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R _{CH}	Channel Resistance (R1 to R6)		34	40	46	Ω
L _{CH}	Channel Inductance			20		nΗ
С	Capacitance per Channel	V _{IN} = 0 V; 1 MHz; 30 mV _{RMS}	16	20	24	pF
		V _{IN} = 2.5 V; 1 MHz; 30 mV _{RMS} ; (Note 2)		12		pF
I _{LEAK}	Diode Leakage Current per Channel	V _{IN} = 3 V		0.1	0.5	μΑ
V _{SIG}	Signal Clamp Voltage					V
	Positive Clamp	I _{LOAD} = 10 mA	5.6	6.8	9.0	
	Negative Clamp	$I_{LOAD} = -10 \text{ mA}$	-1.5	-0.8	-0.4	
V _{ESD}	ESD Protection – Peak Discharge Voltage at any channel input, in system:					kV
	a) Contact discharge per IEC 61000-4-2 Standard and	(Note 2)	±15			
	b) Air discharge per IEC 61000-4-2 Standard	(Note 2)	±15			
f _C	Cut-off frequency			300		MHz
	$Z_{SOURCE} = 50 \Omega, Z_{LOAD} = 50 \Omega$					

All parameters specified at T_A = 25°C unless otherwise noted.
 This parameter is guaranteed by design and verified by device characterization

PERFORMANCE INFORMATION

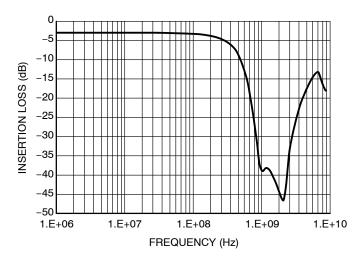
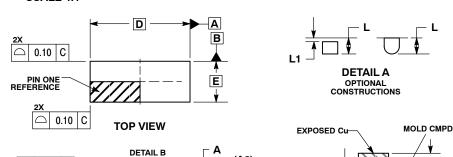


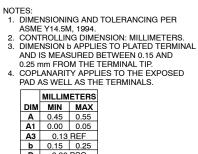
Figure 1. Typical Insertion Loss vs. Frequency (Data0, Data1, Data2, Data3, CLK, CMD)

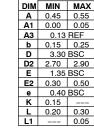
//

16X


NOTE 4

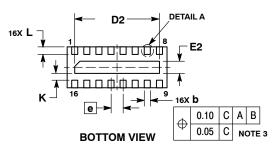
0.05 C


0.05 C



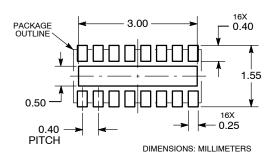
DATE 18 NOV 2009

SEATING PLANE



A3

DETAIL B


OPTIONAL

CONSTRUCTION

SIDE VIEW

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Month Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON47062E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	UDFN16, 3.3X1.35, 0.4P		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales