

MOSFET – Power, Dual, N-Channel, for 3-Cells Lithium-ion Battery Protection, WLCSP8

30 V, 2.6 mΩ, **30 A**

EFC4C002NL

This N-Channel Power MOSFET is produced using **onsemi** trench technology, which is specifically designed to minimize gate charge and ultra low on resistance.

This device is suitable for applications of Drone or Notebook PC.

Features

- Ultra Low On-Resistance
- Low Gate Charge
- Common-Drain Type
- These Device is Pb-Free, Halogen Free and is RoHS Compliant

Applications

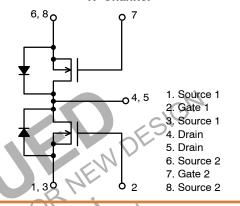
• 3-Cells Lithium-ion Battery Charging and Discharging Switch

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS at $T_A = 25$ °C (Note 1)

Parameter	Symbol	Value	Unit
Source to Source Voltage	V_{SSS}	30	7
Gate to Source Voltage	V _{GSS}	±20	V
Source Current (DC)	ls	30	Α
Source Current (Pulse) PW ≤ 10 μs, Duty Cycle ≤ 1%	1 _{SP}	120	Α
Total Dissipation (Note 1)	P _T	2.6	W
Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit
Junction to Ambient (Note 1)	$R_{\theta JA}$	48	°C/W

^{1.} Surface mounted on ceramic substrate (5000 $\text{mm}^2 \times 0.8 \text{ mm}$).

V _{SSS}	R _{SS(on)} Max	I _S Max
	2.6 mΩ @ 10 V	
30 V	3.3 mΩ @ 8 V	30 A
	5.1 mΩ @ 4.5 V	

ELECTRICAL CONNECTION N-Channel

WLCSP8 CASE 567MC


MARKING DIAGRAM

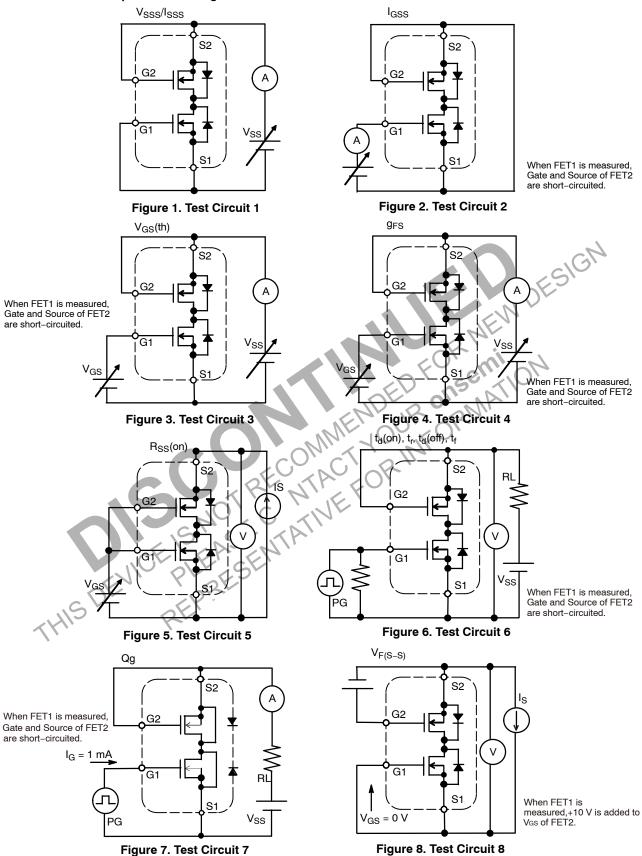
4C2 = Specific Device Code AA = Assembly Location

Y = Year WW = Work Week Z = Lot Traceability ■ = Pb-Free Package

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.


ELECTRICAL CHARACTERISTICS at T_A = 25°C

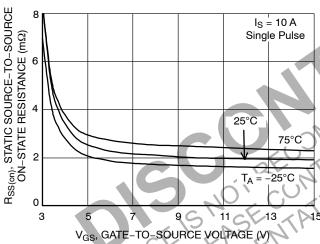
				Value			
Parameter	Symbol	Condition	ns	Min	Тур	Max	Unit
Source to Source Breakdown Voltage	V(BR)SSS	I _S = 1 mA, V _{GS} = 0 V	Test Circuit 1	30			V
Zero-Gate Voltage Source Current	I _{SSS}	V _{SS} = 24 V, V _{GS} = 0 V	Test Circuit 1			1	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = 20 V, V _{SS} = 0 V	Test Circuit 2			200	nA
Gate Threshold Voltage	V _{GS} (th)	V _{SS} = 10 V, I _S = 1 mA	Test Circuit 3	1.3		2.2	V
Forward Transconductance	9FS	V _{SS} = 10 V, I _S = 10 A	Test Circuit 4		16		S
Static Source to Source On-State	R _{SS} (on)	V _{GS} = 10 V, I _S = 10 A	Test Circuit 5	1.5	2.0	2.6	mΩ
Resistance		V _{GS} = 8 V, I _S = 10 A	Test Circuit 5	1.6	2.1	3.3	mΩ
		V _{GS} = 4.5 V, I _S = 10 A	Test Circuit 5	2.2	2.9	5.1	mΩ
Static Drain to Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V, I _S = 1 A			10		mΩ
Gate Resistance	R_{G}		4		3	10)	Ω
Turn-ON Delay Time	t _d (on)	V _{SS} = 15 V, V _{GS} = 10 V			40	5/	ns
Rise Time	t _r	I _S = 10 A Test Circuit 6			750		ns
Turn-OFF Delay Time	t _d (off)				280		ns
Fall Time	t _f			14.	105		ns
Input Capacitance	Ciss	V _{SS} = 15 V, V _{GS} = 0 V, f =	1 MHz	m	6.200		pF
Total Gate Charge	Qg	V_{SS} = 15 V, V_{GS} = 4.5 V, Test Circuit 7	I _S = 15 A	SOL	45		nC
Forward Source to Source Voltage	V _{F(S-S)}	$I_S = 10 \text{ A}, V_{GS} = 0 \text{ V}$	Test Circuit 8	5/1/4.	0.75	1.2	V

Forward Source to Source Voltage $V_{F(S-S)}$ $I_S = 10 \text{ A}, V_{GS} = 0 \text{ V}$ Test Circuit 8 0.75 1.2 V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Test circuits are example of measuring FET1 side.

NOTES: When FET2 is measured, the position of FET1 and FET2 is switched.


TYPICAL CHARACTERISTICS

20 $V_{SS} = 10 V$ 18 Single Pulse SOURCE CURRENT 25°C 12 10 $T_A = 75^{\circ}C$ 8 6 <u>ŵ</u> -25°C 2 0 1 0 1.0 0.5 1.5 2.0 3.0 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 9. On-Region Characteristics

Figure 10. Transfer Characteristics

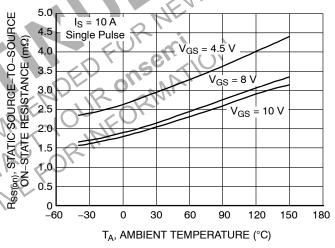
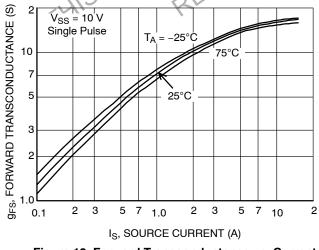



Figure 11. On-Resistance vs. Gate-to-Source Voltage

Figure 12. On-Resistance vs. Temperature

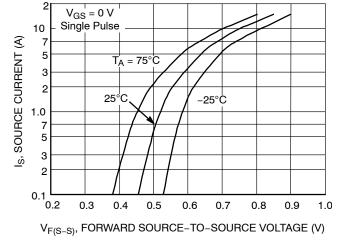


Figure 13. Forward Transconductance vs. Current

Figure 14. Forward Source-to-Source Voltage vs. Current

TYPICAL CHARACTERISTICS (continued)

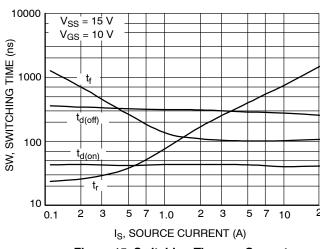


Figure 15. Switching Time vs. Current

Figure 16. Gate-to-Source Voltage vs. Total Gate Charge

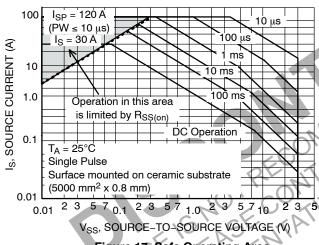


Figure 17. Safe Operating Area

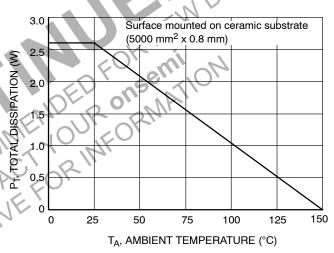


Figure 18. Total Dissipation vs. Temperature

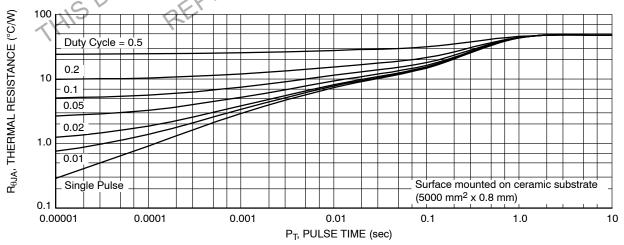
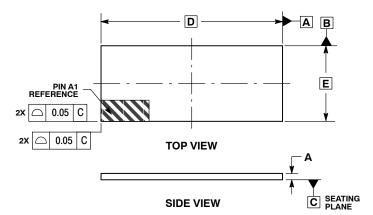


Figure 19. Thermal Response

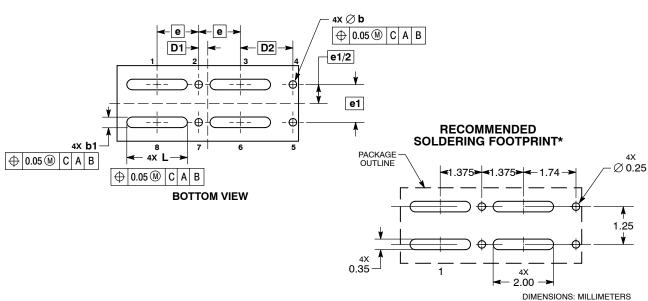
ORDERING INFORMATION

Device	Marking	Package	Shipping (Qty / Packing) [†]
EFC4C002NLTDG	4C2	WLCSP8 6.00x2.50 (Pb-Free / Halogen Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



WLCSP8, 6.00x2.50 / EFCP6025-8EGJ-021 CASE 567MC ISSUE O


DATE 22 JUL 2015

NOTES:

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.

	MILLIMETERS			
DIM	MIN MAX			
Α	0.19	0.23		
b	0.22	0.28		
b1	0.32	0.38		
D	5.95	6.05		
D1	0.305 BSC			
D2	1.740 BSC			
E	2.45	2.55		
е	1.375 BSC			
e1	1.25 BSC			
1	1 07 2 03			

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON00386G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WLCSP8, 6.00X2.50 / EFCP6025-8EGJ-021		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales