

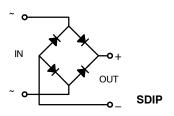
Bridge Rectifiers DF005S - DF10S

Description

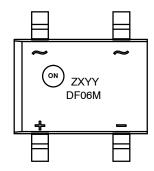
With the ever-pressing need to improve power supply efficiency, improve surge rating, improve reliability, and reduce size, the DFxS family sets a standard in performance.

The design offers an surge rating of 50 A. This is important when improving reliability and increasing efficiency. High efficiency designs strive to reduce circuit resistance, which, unfortunately can result in increased inrush surge. As such high surge current ratings can be required to maintain or improve reliability.

The design also offers better efficiency by achieving a 1.5 A V_F of 1.1 V maximum at 25°C. This lower V_F also supports cooler and more efficient operation.


Finally, the DFxS achieves all this in a SDIP surface mount form factor, reducing board space and volumetric requirements vs. competitive devices.

Features


- Maximum Surge Rating: $I_{FSM} = 50 \text{ A}$, $I^2t = 10 \text{ A}^2\text{Sec}$
- Optimized V_F: Typical 0.94 V at 1.5 A, 25°C
- Glass Passivated Junctions
- Lead Free Compliant to EU RoHS 2002/95/EU Directives
- Green Molding Compound: IEC61249
- Qualified with IR Reflow and Wave Soldering
- UL Certified, UL #E258596

PDIP-4 GW CASE 709AE

MARKING DIAGRAM

Z = Subcon Assembly Plant Code
X = Last Digit of Calendar Year
YY = Weekly Payweek Date code
DFXXXM = Specific Device Number
xxx = 01, 02, 04, 06, 08, 10, or 005

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 4.

ABSOLUTE MAXIMUM RATINGS Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

		Value							
Symbol	Parameter	DF005S	DF01S	DF02S	DF04S	DF06S	DF08S	DF10S	Unit
V_{RRM}	Maximum Repetitive Reverse Voltage	50	100	200	400	600	800	1000	V
V_{RMS}	Maximum RMS Bridge Input Voltage	35	70	140	280	420	560	700	V
V _{DC}	DC Reverse Voltage at Rated I _R	50	100	200	400	600	800	1000	٧
I _{F(AV)}	Average Rectified Forward Current at T _A = 40°C	1.5			Α				
I _{FSM}	Non-Repetitive Peak Forward Surge Current 8.3 ms Single Half-Sine Wave	50			Α				
T _{STG}	Storage Temperature Range	-55 to +150			°C				
TJ	Operating Junction Temperature	-55 to +150			°C				

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter			Unit
P_{D}	Power Dissipation		3.1	W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	Single-Die Measurement (Note 1) (Maximum Land Pattern: 13 x 13 mm)	62	°C/W
		Multi-Die Measurement (Note 2) (Maximum Land Pattern: 13 x 13 mm)	50	
		Multi-Die Measurement (Note 2) (Minimum Land Pattern: 1.3 x 1.5 mm)	105	
ΨJL	Thermal Characterization Parameter, Junction to Lead	Single-Die Measurement (Note 2) (Maximum and Minimum Land Pattern)	27	°C/W

- 1. Device mounted on PCB with 0.5 inch x 0.5 inch (13 mm x 13 mm). Minimum Pads of 2 oz Copper.
- The thermal resistances (R_{θJA} & ψ_{JL}) are characterized with the device mounted on the following FR4 printed circuit boards, as shown in Figure 1 and Figure 2. PCB size: 76.2 x 114.3 mm. Heating effect from adjacent dice is considered and only tow dices are powered at the same time.

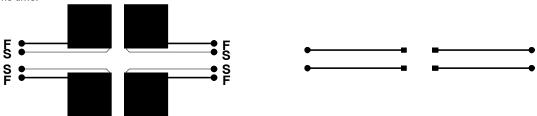
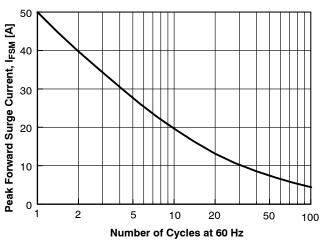


Figure 1. Maximum pads of 2 oz copper

Figure 2. Minimun pads of 2 oz copper

ELECTRICAL CHARACTERISTICS

Values are at T_A = 25°C unless otherwise noted.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _F	Forward Voltage, per Element	I _F = 1.5 A	-	_	1.1	V
I _R	Reverse Current, per Element at Rated V _R	T _A = 25°C	_	_	5.0	μΑ
		T _A = 125°C	_	_	500	
l ² t	Rating for Fusing (t < 8.35 ms)	-	-	-	10	A ² s
СЈ	Typical Capacitance, per Leg	V _R = 4.0 V, f = 1.0 MHz	-	25	_	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

DF005S - DF10S

TYPICAL CHARACTERISTICS

100

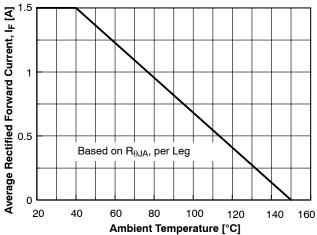
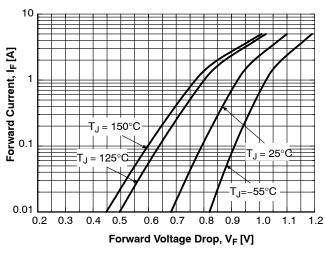



Figure 3. Non-Repetitive Surge Current

Figure 4. Forward Current Derating Curve

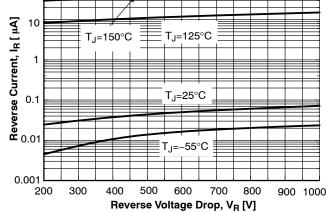


Figure 5. Forward Voltage Characteristics

Figure 6. Reverse Current vs. Reverse Voltage

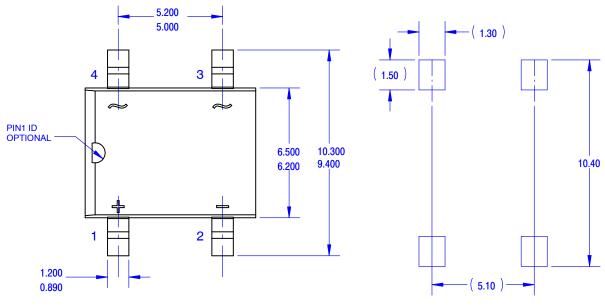
DF005S - DF10S

ORDERING INFORMATION

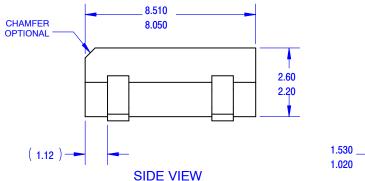
Product Number	Device Code Marking	Package	Shipping [†]
DF01S	DF01S	PDIP-4, GW (Pb-Free, Halide Free)	1500 / Tape and Reel
DF02S	DF02S	PDIP-4, GW (Pb-Free, Halide Free)	1500 / Tape and Reel
DF04S	DF04S	PDIP-4 GW (Pb-Free, Halide Free)	1500 / Tape and Reel
DF06S	DF06S	PDIP-4, GW (Pb-Free, Halide Free)	1500 / Tape and Reel
DF08S	DF08S	PDIP-4, GW (Pb-Free, Halide Free)	1500 / Tape and Reel
DF10S	DF10S	PDIP-4, GW (Pb-Free, Halide Free)	1500 / Tape and Reel

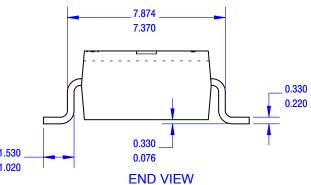
DISCONTINUED (Note 3)

DF005S	DF005S	PDIP-4, GW	1500 / Tape and Reel
		(Pb-Free, Halide Free)	·


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{3.} **DISCONTINUED:** This device is not recommended for new design. Please contact your **onsemi** representative for information. The most current information on this device may be available on www.onsemi.com.


PDIP4 GW CASE 709AE ISSUE O


DATE 31 JUL 2016

LAND PATTERN RECOMMENDATION

NOTES:

A. THIS PACKAGE DOES NOT CONFORM TO ANY REFERENCE STANDARD.

B. ALL DIMENSIONS ARE IN MILLIMETERS.

C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

DOCUMENT NUMBER:	98AON13473G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PDIP4 GW		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales