
APPLICATION NOTE
www.onsemi.com

 Semiconductor Components Industries, LLC, 2020

April, 2023 − Rev. 1
1 Publication Order Number:

AND9930/D

AS0148AT Host Command
Interface Specification

AND9930/D

INTRODUCTION
This document describes the Host Command Interface between the

AS0148AT and a Host microcontroller. This document is intended for
system developers to write Host controller firmware, and for flash
memory content providers.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
2

TABLE OF CONTENTS
Introduction 3. .
Overview 3. .
Host Command Interface Context via Ethernet 4. .
Overview of AS0148AT Configuration 5. .
Host Commands 9. .
System Manager Interface 11. .
Overlay Display Hierarchy 20. .
Load Color Lookup Table 44. .
Spatial Transform Engine Interface 46. .
GPIO Host Interface 50. .
Flash Manager Interface 58. .
Sequencer Interface 77. .
Patch Loader Interface 79. .
Miscellaneous 83. .
Event Monitor 91. .
CCI Manager 94. .
CCI Manager Command Parameters 95. .
Sensor Manager 102. .
Network Commands. 104. .
User Commands 109. .
Appendix A: Big−Endian Encoding 110. .
Appendix B: SPI Non−Volatile Memory Device Support 110. .
Appendix C: Command Sequence Support 112. .
Appendix D: Set State Command Failure Codes 116. .
Appendix E: Overlay Calibration 118. .
Appendix F: Host Command Usage Example 119. .
Appendix G: Character ROM 122. .
Appendix H: Changes Since AP0100 Rev 2 128. .
Appendix I: Network Access Host Command ID Codes 131. .
Appendix J: Maximum Item Count Codes for Network Access Host Commands 133. .

http://www.onsemi.com/

AND9930/D

www.onsemi.com
3

OVERVIEW

BACKGROUND
The AS0148AT is an automotive/surveillance sensor plus

companion−chip, building on the capabilities of its
predecessor: AP0100. The high−level host command
interface has been maintained and extended for AS0148AT,
and in many cases it is backwards−compatible with AP0100.
New commands have been added to support new features.
Full details of the changes introduced for AS0148AT are
provided in “Appendix H: Changes Since AP0100 Rev 2” on
page 128.

The AS0148AT also has a new Ethernet subsystem that
can be used to control the part and to stream video over a
100 MB or 1 GB Ethernet connection. The Ethernet

subsystem is architected as an add−on to the basic AP0100
architecture. Host commands should therefore be
understood in the legacy context (i.e. host access through the
CCI interface) before the new Ethernet context.

Host Command Interface Context via CCI
Figure 1 shows the hardware context of the CCI−based

host command interface for the AS0148AT. In this
configuration, the host controls the AS0148AT through its
camera control interface (CCI). CCI is the standard
two−wire serial interface. This gives the Host access both to
the internal RAM of the device, and to its peripherals.
However, the Host interface interacts with the device
through its Command Register.

SPI Flash/
EEPROM

Sensor

Host

CCI slave

Command Register
Firmware
Variables

Patch RAM

Overlay RAM
(7 x 4 kbytes)

Host Commands

ICB

S
P

I/D
M

A
C

C
I

m
as

te
r

AS0148AT

D
oo

rb
el

l

Microprocessor

Figure 1. Host Command Interface Context via CCI

http://www.onsemi.com/

AND9930/D

www.onsemi.com
4

HOST COMMAND INTERFACE CONTEXT VIA
ETHERNET

Figure 2 shows the hardware context of the
Ethernet−based host command interface. The Ethernet
subsystem has its own microprocessor that handles all of the

network− related control processing, while dedicated
hardware handles the video streaming process. This allows
the main AS0148AT processor to be a very close derivative
of its AP010x predecessor.

SPI
Flash/

EEPROM

Sensor

Microprocessor

CCI−likeslave interface

Command Register

Microprocessor

Firmware
Variables

Patch RAM

Overlay RAM
(7 x 4 kbytes)

Host Commands

ICB

S
P

I
/

D
M

A
C

C
I

m
as

te
r

AP0200AT

Host

Ethernet
InterfacePHY

Ethernet Cable /
Network

Ethernet Subsystem

Main (Imaging) Subsystem

D
oo

rb
el

l

Figure 2. Host Command Interface Context via Ethernet

In Ethernet mode, the Ethernet subsystem processor
interacts with the main processor in much the same way as
an external host does over the legacy CCI interface. In the
context of host commands, the Ethernet subsystem
processor therefore functions primarily as a translator that
receives an Ethernet request packet, converts it into a CCI−
like transaction with the main processor, and sends the result
of that operation back to the originating host as an Ethernet
response packet.

Because the “building blocks” of Ethernet
communication protocols are packets instead of individual
register or memory accesses, the AS0148AT host command
set fits naturally into an Ethernet protocol. When host
commands are sent over the CCI interface, the host must poll
the command register to detect when the command has been
processed and return values are available to be retrieved.

This polling process is handled by the Ethernet subsystem
processor, so the host simply issues a request packet and
waits for a response packet. However, individual register or
memory accesses must now be done as host commands. The
AS0148AT host command set has been extended to support
this.

1. The actual format of request and response packets
for Ethernet−based control of the AS0148AT is
specific to a particular Ethernet protocol definition
an is not covered in this document. Only host
commands are described here.

2. The AS0148AT must be properly configured to
support host commands from Ethernet.

Unless otherwise indicated, the term “AS0148AT
Firmware” in the rest of this document refers to the firmware

http://www.onsemi.com/

AND9930/D

www.onsemi.com
5

running on the main processor, not the firmware running on
the Ethernet subsystem processor.

OVERVIEW OF AS0148AT CONFIGURATION
The AS0148AT has three different hardware

configurations or “modes” that determine how the Ethernet
interface is used. These are:

1. Ethernet mode
The Ethernet subsystem is used exclusively for all
communication between the AS0148AT and the
host. The DOUT_* pins are configured to connect
to an external Ethernet PHY chip. The host sends
register, firmware variable, and memory accesses,
along with other host commands, to the
AS0148AT over Ethernet, and video output is sent
from the part to the host over Ethernet as a
compressed video stream. The CCI interface is not
used. No parallel output video modes are
available.

2. Hybrid mode
Host commands are sent over the CCI interface as

in Parallel mode, but video output is a compressed
video stream sent over Ethernet as in Ethernet
mode. No commands over Ethernet can be
processed in this mode. No parallel output modes
are available.

ARCHITECTURAL CONCEPTS
The AS0148AT hardware implements a 16−bit command

register. Bit 15 of this register is a ’sticky’ doorbell interrupt
to the AS0148AT microprocessor. The bit is ’sticky’ in that
the Host can set the bit, but it cannot clear it; only the
AS0148AT firmware can clear the bit.

The AS0148AT firmware provides the Command
Handler task, which is responsible for processing Host
commands, and returning the command status (and any
optional response parameters) to the Host. The firmware
also provides a logical command handler variable page. This
page contains the Parameters Pool, a region of RAM to
contain command parameters and response parameters. The
size of this region of RAM determines the maximum size of
any command’s parameters or response parameters.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
6

Figure 3. Command Processing Components

Command Handler interface

onCommand (Command Params*)

Interrupt
Controller

Top −Level
Interrupt Handler

Command Register

Command driver

IRQ

Command

Command
Handler

Command
Tables

Command

Doorbell
event

Task event

Registers
ISR

‘doorbell’ int

Parameters Pool

P arameters

Responses

I2 C slave

IC B

Status

XDMA

P
ar

am
et

er
s

R
es

po
ns

es

S
ta

tu
s

Internally, the Command Handler provides ’Command
Tables’. These contain ’handlers’ for each command
supported by the firmware. When a host issues a command,
the Command Handler task searches the Command Tables
to locate a handler, which it then invokes. Each handler is
invoked with an abstract pointer to the Parameters Pool, to
allow each command access to its parameters.

Command handlers can be either synchronous, which
means they execute completely within the context of the
command handler task, or asynchronous, which means the
command handler signals a separate task to process the

command. In the synchronous case, the return value from
the handler function represents the final state of the
command. In the asynchronous case, the return value from
the handler only represents the fact that the command was
valid and accepted, and is in progress.

The command handler always waits for the command
handler function to complete. Then it writes the returned
command result status to the command register. This clears
the doorbell bit, indicating to the Host that the command has
completed. The Host is now free to retrieve any response
parameters and to issue another command.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
7

HOST COMMAND PROCESSING
The Host command processing sequence is shown in

Figure 4.

Figure 4. Host Command Processing Flow

Read Command register

Doorbell bit clear?

No

Command has
parameters?

Ye s

Write parameters to
Parameter Pool

Ye s

Write command to
Command register

No

Issue
Command

Host could insert an optional delay
here

Host could insert an optional delay

here

Wait for a
response?

Read Command register

Doorbell bit clear?

Yes

N o

Result Status
is ENOERR?

Yes

Command has
response parameters?

Ye s

At this point, Command Register
contains Result Status code

Done

No

No

No

Read response parameters
from Parameters Pool

For host commands sent via the CCI interface, this
sequence describes the interaction between the host and the
AS0148AT part. For host commands sent via the Ethernet
interface, this sequence describes the interaction between
the Ethernet subsystem processor and the main processor.
Therefore, in the following description, the term “host”
refers to the host if it is connected via the CCI interface, or
the Ethernet subsystem processor if the host is connected via
the Ethernet interface.

The Host issues a command by writing (through the CCI)
to the Command Register. All commands are encoded with
bit 15 set, which automatically generates the Host command
(doorbell) interrupt to the microprocessor.

Assuming initial conditions, the Host first writes the
command parameters (if any) to the parameters pool (in the
command handler’s shared−variable page), then writes the
command to the Command Register. The firmware’s
interrupt handler is invoked, which immediately copies the
Command Register contents (to mitigate against accidental
overwriting by the host). The interrupt handler then signals

the Command Handler task to process the command (as
described in “Architectural Concepts” on page 4).

If the Host wishes to determine the outcome of the
command, it must poll the Command Register waiting for
the doorbell bit to be cleared. This indicates that the
firmware completed processing the command. The contents
of the Command Register indicate the command’s result
status. If the command generated response parameters, the
Host can now retrieve these from the parameters pool.

Note: The Host must not write to the parameters pool, nor
issue another command, until the previous command
completes. This is true even if the Host does not care about
the result of the previous command. It is strongly
recommended that the Host tests that the doorbell bit is clear
before issuing a command.

Example C source code illustrating how a host can issue
a ’Change−Config’ request via the CCI interface is provided
in “Appendix F: Host Command Usage Example” on
page 119.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
8

Example source code illustrating how a host can issue
commands via the Ethernet interface is outside the scope of
this document, see AS0148AT Ethernet Protocols
Specification for details.

Synchronous Command Flow
The typical flow for synchronous commands is:

1. The Host issues a command to perform an
operation.

2. The registered command handler is invoked,
validates the command parameters, and then
performs the operation. The handler returns the
command result status to indicate the result of the
operation.

3. The Host retrieves the command result value, and
any associated command response parameters.

Asynchronous Command Flow
The typical flow for asynchronous commands is:

1. The Host issues a command to start an operation.
2. The registered command handler is invoked,

validates and copies the command parameters,
then signals a separate task to perform the
operation. The handler returns the ENOERR return
value to indicate the command was acceptable and
is in progress.

3. The Host retrieves the command return value – if
it is not ENOERR (see Table 3, “Response Codes,”
on page 10) the Host knows that the command was
not accepted and is not in progress.

4. Subsequently, the Host issues an appropriate get
status command to both poll whether the command
has completed, and if so, retrieve any associated
response parameters.

5. The registered command handler is invoked,
determines the state of the command (via shared
variables with the processing task), and returns
either EBUSY to indicate the command is still in
progress, or it returns the result status of the
command.

6. The Host must re−issue the get status command
until it does not receive the EBUSY (see Table 3)
response.

Asynchronous commands exist to allow the Host to issue
multiple commands to the various subsystems without
having to wait for each command to complete. This prevents
the Host command interface from being blocked by a
long−running command. Therefore, each asynchronous
command has a get status (or similar) command to allow the
Host to determine when the asynchronous command has
completed (see Table 1).

Table 1. ASYNCHRONOUS COMMANDS AND THEIR ’GET STATUS’ PARTNER

Component Asynchronous Command ’Get Status’ Command

Overlay Manager Load Buffer Load Status

Load String0 Load Status

Load String1 Load Status

Load String2 Load Status

Load String3 Load Status

STE Manager Load Config Load Status

Flash Manager Get Lock Lock Status

Read Flash Status

Write Flash Status

Erase Block Flash Status

Erase Device Flash Status

Query Device Flash Status

Patch Loader Load Patch Status

Apply Patch Status

Sequencer Refresh Refresh Status

Calib Stats Control Read

CCI Manager Get Lock Lock Status

Read CCI Status

Write CCI Status

Write Bit−field CCI Status

http://www.onsemi.com/

AND9930/D

www.onsemi.com
9

Each asynchronous command will return a result status
almost immediately to indicate whether the command was
accepted. ENOERR means that the command was valid, and
is now in progress. It is possible for an asynchronous
command to not be accepted, in which case something other
than ENOERR will be returned. This indicates that the
command is not in progress. Note that in all cases, the
doorbell bit has to go to zero before the Host can interpret the
result status code.

START−UP HOST COMMAND LOCKOUT
The AS0148AT firmware implements an internal Host

Command lock. At start−up, the firmware obtains this lock,
which prevents the Host from successfully issuing a Host
command. All Host commands will be rejected with
EBUSY until the lock is freed.

The firmware releases the Host Command lock when it
completes its start−up processing. The time to do this is
dependent upon the configuration mechanism. It is
recommended that the Host poll the device with the System
Manager Get State command until ENOERR is returned.

MULTITASKING
Note that when the Ethernet interface is being used, the

Ethernet subsystem processor takes care of this start−up
condition automatically. Therefore the host simply issues its
first request and waits for the response packet; when the
response packet is sent, the AS0148AT is up and running.

The AS0148AT firmware is multitasking. Therefore it is
possible for an internally requested command to be in
progress when the Host issues a command. In these

circumstances, the Host command is immediately rejected
with EBUSY. The Host should reissue the command after a
short interval.

COMMAND SEQUENCE PROCESSING
The AS0148AT firmware supports command sequence

records stored in SPI non−volatile memory (NVM). A
command sequence consists of one or more register/variable
updates and/or Host commands. A command sequence can
only contain a subset of commands as detailed in
“Appendix F: Host Command Usage Example” on page 119.

HOST COMMANDS

OVERVIEW
The AS0148AT supports a number of functional modules

or processing subsystems. Each module or subsystem
exposes commands to the Host to control and configures its
operation. The Host Interface is extensible – commands are
not hard−coded. This permits firmware patches to be loaded
that offer new (or extended) commands (through the
command handler table).

COMMAND PARAMETERS
Command parameters are written to the Parameters Pool

shared variables by the host prior to invoking the command.
Similarly, any Command Response parameters are also
written back to the Parameters Pool by the firmware.

Base Parameter Types
All command parameters use (or are built from) the

supported set of base data types as detailed in Table 2.

Table 2. BASE PARAMETER TYPES

Base Type Size Description

UINT8 8 bits Unsigned integer (0...255)

INT8 8 bits Signed integer (−128...127)

UINT16 16 bits Unsigned integer (0...65535)

INT16 16 bits Signed integer (−32768...32767)

UINT32 32 bits Unsigned integer (0... 4294967295)

INT32 32 bits Signed integer (−2147483648 ... 2147483647)

FLAG 8 bits Boolean (0 = FALSE, non−zero = TRUE)

BITFIELD_8 8 bits Set of bits − encoding specific to parameter

BITFIELD_16 16 bits Set of bits − encoding specific to parameter

BITFIELD_32 32 bits Set of bits − encoding specific to parameter

FLOAT 32−bit IEEE 754 floating point

NOTE: All multibyte types are encoded in big−endian format; see “Appendix A: Big−Endian Encoding” on page 110 for details.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
10

RESULT STATUS CODES
Table 3 shows the result status codes that are written by

the command handler to the Host command register, in
response to a command.

Table 3. RESPONSE CODES

Value Mnemonic Typical Interpretation

0x00 ENOERR No error − command was successful

0x01 ENOENT No such entity

0x02 EINTR Operation interrupted

0x03 EIO I/O failure

0x04 E2BIG Too big

0x05 EBADF Bad file/handle

0x06 EAGAIN Would−block, try again

0x07 ENOMEM Not enough memory/resource

0x08 EACCES Permission denied

0x09 EBUSY Entity busy, cannot support operation

0x0A EEXIST Entity exists

0x0B ENODEV Device not found

0x0C EINVAL Invalid argument

0x0D ENOSPC No space/resource to complete

0x0E ERANGE Parameter out of range

0x0F ENOSYS Operation not supported

0x10 EALREADY Already requested/exists

NOTE: Any unrecognized host commands will be immediately rejected by the Command Handler, with result status code ENOSYS.

IMPLEMENTATION CONSTANTS
Each implementation of the Host command interface

imposes limits upon resources; for example, address ranges
or available buffer sizes. Table 4 lists constants used

throughout this document to refer to these
implementation−dependent limits, and details the
implementation of these constants.

Table 4. IMPLEMENTATION CONSTANTS

Constant Implementation Description

PARAMS_POOL_SIZE 256 bytes Size of the Parameters Pool (in bytes)

GPIO_MAX_GPI_ASSOCIATIONS 8 Maximum number of GP input associations supported by the GPIO Man-
ager

GPIO_GPI_SAMPLE_PERIOD 33 ms Period between GPI samples (for association processing)

CMDHANDLER_MAX_CMDSEQS 2 Maximum number of Command Sequences that can be recursively active

EVENT_MONITOR_MAX_ASSOCIA-
TIONS

8 Maximum number of associations that can be supported by the Event
Monitor.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
11

SYSTEM MANAGER INTERFACE

OVERVIEW
The System Manager component is responsible for the

start−up and configuration of the AS0148AT device, and for
managing the overall operating state of the device.

Auto−Configuration
The System Manager supports an auto−configuration

feature. During system start−up, the System Manager first
detects whether an NVM device is attached to the
AS0148AT and if it contains a valid table of contents record.
If not, the System Manager detects whether the OTPM has
valid Virtual Flash record(s) or not. If no Virtual Flash
records are found, the System Manager will then apply the
default configuration to the sensor and hardware, and enter
streaming.

The Host can disable the auto−configuration feature by
grounding the SPI_SDI pin. The System Manager samples

the state of this pin during the SPI device detection process.
If no NVM device is detected, and the SPI_SDI pin is
grounded, then auto−configuration is disabled; this is
termed ’Host Configuration’.

Note: The Host can also disable or force
auto−configuration by overriding the SYSMGR_−
CONFIG_MODE variable default within an OTPM record.
Details of the AS0148AT OTPM support are provided in
“AS0148AT OTPM Contents Encoding Specification”.

System State Management
The System Manager allows the Host to control the

operating state of the system. The operating state determines
the functionality supported by the various AS0148AT
subsystems. Table 5 describes the permanent states
supported by the System Manager, and Table 6 shows the
functionality supported by the AS0148AT subsystems in
each permanent state.

Table 5. SYSTEM MANAGER PERMANENT STATES

Name Value Description

SYS_STATE_IDLE 0x20 System Configuration has completed, the system is not streaming, and is
waiting for commands from the Host.

SYS_STATE_STREAMING 0x31 Image data is streaming from the sensor, through the color pipe, and option-
ally through the graphical overlay subsystem.

SYS_STATE_SUSPENDED 0x41 All firmware operations are suspended − the hardware subsystems remain
active; the sensor is in standby.

SYS_STATE_SOFT_STANDBY 0x53 The system is in soft standby (controlled through the SYSMGR_SET_STATE
Host command); no subsystems are functional, with the exception of the CCI
slave hardware.

SYS_STATE_HARD_STANDBY 0x5B The system is in hard standby (controlled through the STANDBY pin); no
subsystems are functional. As the part is in HARD STANDBY and the CCI
buses are nonfunctional the Host can never read this state.

Table 6. SYSTEM STATE VS. SUBSYSTEM FUNCTIONALITY

System State Idle Streaming Suspended Standby

AS0148AT Subsys-
tem

Sensor Standby Active Standby Standby

Color Pipe Idle Active Active Standby

Sequencer Disabled Active Disabled Standby

Overlay

Disabled Dependent upon overlay configuration Disabled Standby

TX subsystem

Idle Dependent upon TX configuration Dependent upon TX
configuration

Standby

Processor subsystem Active Active Active Standby

Transient States
The System Manager also supports a number of transient

states (Table 7); the system will only be in these states for a

certain amount of time. The precise amount of time is
dependent upon the state and system configuration.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
12

Table 7. SYSTEM MANAGER TRANSIENT STATES

Name Value Description

SYS_STATE_OTPM_DEFAULTS 0x10 Processing OTPM records

SYS_STATE_OTPM_CONFIG 0x11 Locating and processing virtual Flash

SYS_STATE_OC_LOAD_DEFAULTS 0x12 Locating, verifying and applying init (defaults) table (virtual Flash)

SYS_STATE_OC_LOAD_PATCHES 0x13 Locating, verifying and loading patches (virtual Flash)

SYS_STATE_OC_LOAD_CALIB 0x14 Locating, verifying and applying calibration init table (virtual Flash)

SYS_STATE_OC_CONFIG_TASKS 0x15 Tasks/libs processing initialization tables (virtual Flash)

SYS_STATE_FLASH_CONFIG 0x17 Detecting SPI Flash/EEPROM devices

SYS_STATE_AUTO_CONFIG 0x18 Auto−configuration active

SYS_STATE_HOST_CONFIG 0x19 Host configuration active

SYS_STATE_FC_LOAD_DEFAULTS 0x1A Locating, verifying and applying init (defaults) table (NVM)

SYS_STATE_FC_LOAD_PATCHES 0x1B Locating, verifying and loading patches (NVM)

SYS_STATE_FC_LOAD_CALIB 0x1C Locating, verifying and applying calibration init table (NVM)

SYS_STATE_FC_CONFIG_TASKS 0x1D Tasks/libs processing initialization tables (NVM)

SYS_STATE_SET_FEATURES 0x21 Tasks/libs processing feature control register to determine capabilities

SYS_STATE_DO_CONFIG_CHANGE 0x29 System is actioning the Change−Config request; the current configura-
tion is being applied to the hardware

SYS_STATE_VALIDATE_CONFIG 0x2A System is validating that the current configuration can be applied to
the hardware

SYS_STATE_HARD_STANDBY_DURING_CON
FIG

0x2B Tests STANDBY pin state and enters hard−standby if asserted. This
state permits hard−standby to occur prior to entering streaming (for the
first time only).

SYS_STATE_CONFIG_POWER_ON 0x2C System is powering−on zones required for the new configuration

SYS_STATE_CONFIG_POWER_OFF 0x2D System is powering−off zones not required for the new configuration

SYS_STATE_DO_START_STREAMING 0x30 System is starting streaming

SYS_STATE_STOP_STREAMING 0x33 System is stopping streaming

SYS_STATE_DO_SUSPEND 0x42 System is actioning the Suspend request

SYS_STATE_DO_SOFT_STANDBY 0x51 System is actioning the Soft Standby request

SYS_STATE_DRIVER_SOFT_STANDBY 0x52 Driver layer entering soft standby

SYS_STATE_DRIVER_LEAVE_SOFT_STAND-
BY

0x54 Driver layer leaving soft standby

SYS_STATE_LEAVE_SOFT_STANDBY 0x55 System is leaving soft standby

SYS_STATE_DO_HARD_STANDBY 0x59 System is actioning the Hard Standby request

SYS_STATE_DRIVER_HARD_STANDBY 0x5A Driver layer entering hard standby

SYS_STATE_DRIVER_LEAVE_HARD_STAND-
BY

0x5C Driver layer leaving hard standby

SYS_STATE_LEAVE_HARD_STANDBY 0x5D System is leaving hard standby

POWER MANAGEMENT
The AS0148AT supports multiple independent power

zones, to permit the firmware to power down specific
elements of the hardware if they are not in use. The System
Manager provides the Config Power Management host
command to allow the host to configure the power state of
the device.

The System Manager supports two power management
modes:

1. Host−Controlled Mode
The host can configure the desired power state of
each zone. The configured power state will then
take effect during the next Change−Config
operation. The Change−Config operation will be

http://www.onsemi.com/

AND9930/D

www.onsemi.com
13

rejected with EACCES if the host has requested a
zone required to be active for the configured use
case should be powered off.

2. Dynamic Mode
The firmware dynamically determines which
zones should be powered on or off, based on the
current configured use case. It will also power off

zones during hard and soft standby (where
applicable).

At start−up, all zones are powered on, and the System
Manager operates in Host− Controlled mode.

SUMMARY
Table 8 summarizes the Host commands relating to the

System Manager subsystem of the AS0148AT.

Table 8. SYSTEM MANAGER HOST COMMANDS

System Manager Host Command Value Type Description

Set State 0x8100 Synchronous Request the system enter a new state

Get State 0x8101 Synchronous Get the current state of the system

Config Power Management 0x8102 Synchronous Configure the power state of the system

SYSTEM MANAGER COMMAND PARAMETERS

Extended Type
Table 9 lists the extended parameter types specific to the

System Manager subsystem.

Table 9. SYSTEM MANAGER PARAMETER TYPE

Extended Type Size Field Base Type Description

SYSMGR_STATE 8 bits − UINT8 State of the System Manager − see Table 10

POWER_MGMT_MODE 8 bits − UINT8 Power Management mode: 0: Host−controlled
(default)
1: Dynamic

System Manager States
Table 10 lists the System Manager states that can be

requested by the Host.

Table 10. SYSTEM MANAGER ’REQUEST’ STATES

Name Value Description

SYS_STATE_ENTER_CONFIG_CHANGE 0x28 Requesting the ’Enter Config Change’ state effects the ’Change Config’ pseudo−
command. It instructs the System Manager to take the system out of the stream-
ing state, and then commands all components to reconfigure (based on the state
of the firmware shared−variables). After reconfiguration, the System Manager
restores the system to the streaming state.

SYS_STATE_ENTER_STREAMING 0x34 Requesting the ’Enter Streaming’ state instructs the System Manager to com-
mence streaming video through the system. The System Manager instructs all
components to prepare for streaming, and then automatically enters the Stream-
ing state.

SYS_STATE_ENTER_SUSPEND 0x40 Requesting the ’Enter Suspend’ state instructs the System Manager to suspend
all operations of the firmware. The System Manager instructs all components to
prepare for suspension, and then automatically enters the Suspended state.

SYS_STATE_ENTER_SOFT_STANDBY 0x50 Requesting the ’Enter Soft Standby’ state instructs the System Manager to place
the system into soft standby. The System Manager instructs all components to
prepare for soft standby, and then automatically places the system into soft
standby.

SYS_STATE_LEAVE_SOFT_STANDBY 0x55 Requesting the ’Leave Soft Standby’ state instructs the System Manger to exit
the system from soft standby. The System Manager instructs all components to
leave soft standby, and then returns the system to the state it was in before soft
standby occurred.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
14

Power Management Modes
Table 11 lists the power management modes that can be

requested by the Host.

Table 11. POWER MANAGEMENT MODES

Power Management Mode Value Description

Host−Controlled 0x0 The host controls which power zones are powered on. This is the default mode. All
power zones are powered on by default

Dynamic 0x1 The firmware automatically controls the power zones based on the configured operating
use case. Zones are powered off during soft and hard standby (when appropriate).

SET STATE
This synchronous command requests the System

Manager enter the specified state.

Command

Table 12.

Size Value Mnemonic Description

16 bits 0x8100 SYSMGR_SET_STATE Set the system state.

Command Parameters

Table 13.

Byte Offset Field Type Value Description

+0 STATE SYSMGR_STATE The desired state to enter.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
15

RESULT STATUS

Table 14.

Result Status Code Description

ENOERR Command accepted and in operation.

EINVAL Requested state parameter is invalid.

EACCES State cannot be requested at present.

Other Component−specific failure – see “Appendix D: Set State Command Failure Codes” on page 116.

Command Response Parameters
None.

Notes
 The Set State command requests that System Manager

transition to the requested state. The time for the system
to reach that state is indeterminate.

 The set of states that the Host can request at any
particular time is dependent upon the current system
state, as shown in Table 15. A request to enter a
non−permitted state will be rejected with EACCES.

Table 15. PERMITTED STATE TRANSITIONS

Active State Permitted State Transition Resultant State

SYS_STATE_IDLE SYS_STATE_ENTER_CONFIG_CHANGE SYS_STATE_STREAMING

SYS_STATE_ENTER_SUSPEND SYS_STATE_SUSPENDED

SYS_STATE_ENTER_SOFT_STANDBY SYS_STATE_SOFT_STANDBY

SYS_STATE_STREAMING SYS_STATE_ENTER_CONFIG_CHANGE SYS_STATE_STREAMING

SYS_STATE_ENTER_SUSPEND SYS_STATE_SUSPENDED

SYS_STATE_ENTER_SOFT_STANDBY SYS_STATE_SOFT_STANDBY

SYS_STATE_SUSPEND SYS_STATE_ENTER_STREAMING SYS_STATE_STREAMING

SYS_STATE_ENTER_CONFIG_CHANGE SYS_STATE_STREAMING

SYS_STATE_ENTER_SOFT_STANDBY SYS_STATE_SOFT_STANDBY

SYS_STATE_STANDBY SYS_STATE_LEAVE_SOFT_STANDBY <state prior to Soft Standby>

SYS_STATE_ENTER_CONFIG_CHANGE SYS_STATE_STREAMING

SYS_STATE_ENTER_SUSPEND SYS_STATE_SUSPENDED

 The Change−Config pseudo−command − Set State
(SYS_STATE_ENTER_CON− FIG_CHANGE) - is a
special case, as the firmware components are permitted
to reject this state change request if the firmware shared
variable configuration is inappropriate. The component
rejecting the request is identified through
SYSMGR_CMD_− COMP_ID, and the reason code for

the rejection is recorded in
SYSMGR_CMD_COMP_REJECT_ID. (See
“Appendix D: Set State Command Failure Codes” on
page 116).

GET STATE
This synchronous command retrieves the current system

state.

Table 16. COMMAND

Size Value Mnemonic Description

16 bits 0x8101 SYSMGR_GET_STATE Get the system state

Command Parameters
None.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
16

Table 17. RESULT STATUS

Result Status Code Description

ENOERR Command completed successfully

EBUSY Command processor is busy (Host Command Lock is locked)

Table 18. COMMAND RESPONSE PARAMETERS

Byte
Offset Field Type Value Description

+0 STATE SYSMGR_STATE The current system state

Notes
The Get State command retrieves the current state of the

system. Note the returned value may reflect an internal
transient state.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
17

CONFIG POWER MANAGEMENT
This synchronous command configures the power state of

the system.

Table 19. COMMAND

Size Value Mnemonic Description

16 bits 0x8102 SYSMGR_CONFIG_POWER_MGMT Configure the power state of the system

Table 20. COMMAND PARAMETERS

Byte Offset Field Type Value Description

+0 Mode POWER_MGMT_MODE − Desired power management mode

+1 Enable Zone A2 BOOL FALSE: off
TRUE: on

Enable power to zone A2

+2 Enable Zone A3 BOOL FALSE: off
TRUE: on

Enable power to zone A3

+3 Enable Zone A4 BOOL FALSE: off
TRUE: on

Enable power to zone A4

+4 Enable Zone A5 BOOL FALSE: off
TRUE: on

Enable power to zone A5

+5 Enable Zone A6 BOOL FALSE: off
TRUE: on

Enable power to zone A6

Table 21. RESULT STATUS

Result Status Code Description

ENOERR Command accepted and in operation

EINVAL Requested parameter is invalid

http://www.onsemi.com/

AND9930/D

www.onsemi.com
18

Command Response Parameters
None

Notes
 This command configures the power management

subsystem, but does not effect any change. The
requested configuration will be applied during the next
Change−Config operation.

 The ’Enable Zone An’ fields are only supported in
host−controlled mode. These fields are ignored if
dynamic mode is selected.

 When dynamic mode is selected, the System Manager
will be configured to force a Change−Config operation
to occur when leaving hard or soft standby.

OVERLAY HOST COMMAND INTERFACE
The following subsections detail the various commands to

control and configure the graphical overlay function of the
AS0148AT.

OVERVIEW
The overlay subsystem has four types of graphic overlays:

character, bitmap image, line, and arc.

Character Overlay
Characters are 32x32 pixels. Hardware has a 192

character ROM in addition to an 8k RAM that can store 64
user characters.

Four text strings are supported. Each string holds 64
character indexes. Indexes 0 to 191 reference characters in
ROM. Indexes 192 to 255 reference characters in RAM.

User character RAM data can be stored in NVM and
automatically loaded after system reset.

AS0148AT has one character overlay.

Bitmap Image Overlay
The bitmap image overlay displays run−length encoded

images stored in a hardware buffer.
AS0148AT has seven bitmap image overlays.

Line and Arc Overlay
The line overlay has 10 line engines and the arc overlay

has 5 arc engines. Lines and arcs are drawn by configuring
and enabling the engines with the Draw Shape command.

Colors for lines and arcs are stored in a 16 entry color
lookup table (LUT). Each overlay has its own color LUT.
Colors are in YCbCrAlpha format, 8 bits per channel. Color
LUTs are loaded with the Set Color Lookup Table or Load
Color Lookup Table commands.

Line Engine
AS0148AT has two line overlays to provide 20 lines and

two arc overlays to provide 10 arcs.

Table 22. LINE ENGINE

Property Description

valid 0: Line is disabled
1: Draw line

color Index into color LUT

width Width of line

x0 y0 Start coordinate

x1 y1 End coordinate

box 0: Draw a line
1: Draw a box with corners (x0,y0) and
(x1,y1)

anti−alias 0: No anti−alias

1: Enable anti−alias

Figure 5. Line Engine

http://www.onsemi.com/

AND9930/D

www.onsemi.com
19

Arc Engine

Table 23. ARC ENGINE

Property Description

valid 0: Arc is disabled
1: Draw arc

color Index into color LUT

width Width of arc

x y Center coordinate

start_degrees Angle to start arc

degrees Length of arc

radius Arc radius

anti−alias 0: No anti−alias
1: Draw with anti−alias

Figure 6. Arc Engine

Referencing Overlays
Overlays are numbered as shown in Table 24.

Table 24. OVERLAY NUMBERING

Overlay Type Overlay Name

0 bitmap bitmap 0

1 bitmap bitmap 1

2 bitmap bitmap 2

3 bitmap bitmap 3

4 bitmap bitmap 4

5 bitmap bitmap 5

http://www.onsemi.com/

AND9930/D

www.onsemi.com
20

Table 24. OVERLAY NUMBERING

Overlay Overlay NameType

6 bitmap bitmap 6

7 line line 0

8 line line 1

9 arc arc 0

10 arc arc 1

11 character character

OVERLAY DISPLAY HIERARCHY
The hierarchy is configured by assigning overlays to

different layers using the Enable Layer command. Lower
number layers will be displayed on top of higher number
layers.

In the following example layer configuration shown in
Table 25, lines will be overlaid on top of arcs, which will be
overlaid on top of bitmap images.

Table 25. EXAMPLE OVERLAY LAYER HIERARCHY

Layer Overlay Overlay Name

0 7 line 0

1 8 line 1

2 9 arc 0

3 10 arc 1

4 0 bitmap 0

5 1 bitmap 1

6 2 bitmap 2

7 3 bitmap 3

8 4 bitmap 4

9 5 bitmap 5

10 6 bitmap 6

Summary
Firmware always configures the character overlay to be

displayed on top of the other overlays.

Table 26 summarizes the host commands relating to the
graphical overlay subsystem of the AS0148AT.

Table 26. OVERLAY HOST COMMANDS

Overlay Host Command Value Type Description

Enable Overlay Subsystem 0x8200 Synchronous Enable or disable the overlay subsystem.

Get Overlay Subsystem State 0x8201 Synchronous Retrieves the state of the overlay subsystem.

Set Calibration 0x8202 Synchronous Set the calibration offset.

Set Bitmap Property 0x8203 Synchronous Set a property of a bitmap.

Get Bitmap Property 0x8204 Synchronous Get a property of a bitmap.

Set String Property0 0x8205 Synchronous Set a property of a character string.

Set String Property1 0x8215 Synchronous Set a property of a character string.

Set String Property2 0x8216 Synchronous Set a property of a character string.

Set String Property3 0x8217 Synchronous Set a property of a character string.

Load Bitmap Buffer 0x8206 Asynchronous Load a bitmap image from NVM.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
21

Table 26. OVERLAY HOST COMMANDS

Overlay Host Command DescriptionTypeValue

Load Status 0x8207 Synchronous Retrieve status of an active load buffer operation.

Write Bitmap Buffer 0x8208 Synchronous Write to a bitmap image overlay buffer.

Read Bitmap Buffer 0x8209 Synchronous Read from a bitmap image overlay buffer.

Enable Layer 0x820A Synchronous Enable or disable an overlay layer.

Get Layer Status 0x820B Synchronous Retrieve the status of an overlay layer.

Set String0 0x820C Synchronous Set the character string.

Set String1 0x820F Synchronous Set the character string.

Set String2 0x8210 Synchronous Set the character string

Set String3 0x8211 Synchronous Set the character string

Get String0 0x820D Synchronous Get the current character string

Get String1 0x8212 Synchronous Get the current character string

Get String2 0x8213 Synchronous Get the current character string

Get String3 0x8214 Synchronous Get the current character string

Load String0 0x820E Asynchronous Load a character string from NVM

Load String1 0x821B Asynchronous Load a character string from NVM

Load String2 0x821C Asynchronous Load a character string from NVM

Load String3 0x821D Asynchronous Load a character string from NVM

Draw Shape 0x8218 Synchronous Draw lines and arcs

Set Color Lookup Table 0x8219 Synchronous Set color LUT entries for a line or arc overlay

Write User Character RAM 0x821A Synchronous Write to User Character RAM

Load Color Lookup Table 0x821E Asynchronous Load color LUT for a line or arc overlay from NVM

Load User Character RAM 0x821F Asynchronous Load User Character RAM from NVM

OVERLAY COMMAND PARAMETERS

Extended Types
Table 27 lists the extended parameter types specific to the

graphical overlay subsystem.

Table 27. OVERLAY PARAMETER TYPES

Extended Type Size Field Base Type Description

OVRL_LUT 32 bits – UINT32 Overlay color look−up table
[Y(8bits)−Cb(8bits)−Cr(8 bits)−Alpha(8 bits)] Additional details
can be found in the AP010AT NVM Encoding Spec Technical
Note TN−09−321

OVRL_CROP_MODE 8 bits – UINT8 Cropping mode:
0: No cropping
1: Crop outside; crop window specifies the uncropped (visible)
portion of the bitmap
2: Crop inside; crop window specifies the cropped (invisible)
portion of the bitmap

http://www.onsemi.com/

AND9930/D

www.onsemi.com
22

Overlay Properties
The graphical overlay function supports bitmap images

and character strings. These share a common set of

configuration properties controlled by the host. Table 19
details these properties; property identifiers are encoded
within a UINT8 type.

Table 28. OVERLAY PROPERTIES

ID Mnemonic Type Description

0x00 OVRL_PROP_X_POS UINT16 Starting horizontal offset (in pixels).

0x01 OVRL_PROP_Y_POS UINT16 Starting vertical offset (in pixels)

0x02 OVRL_PROP_X_LEN UINT16 Width (in pixels). This property is determined by the bitmap and
cannot be dynamically adjusted.

0x03 OVRL_PROP_Y_LEN UINT16 Height (in pixels)

0x04 OVRL_PROP_SIZE UINT16 Size of bitmap (in bytes)

0x05 OVRL_PROP_IS_CALIBRATED FLAG Flag to indicate if global calibration offset should be applied to the
bitmap.

0x06 OVRL_PROP_LUT0 OVRL_LUT Color LUT for color 0 / background

0x07 OVRL_PROP_LUT1 OVRL_LUT Color LUT for color 1 / foreground

0x08 OVRL_PROP_LUT2 OVRL_LUT Color LUT for color 2

0x09 OVRL_PROP_LUT3 OVRL_LUT Color LUT for color 3

0x0A OVRL_PROP_LUT4 OVRL_LUT Color LUT for color 4

0x0B OVRL_PROP_LUT5 OVRL_LUT Color LUT for color 5

0x0C OVRL_PROP_LUT6 OVRL_LUT Color LUT for color 6

0x0D OVRL_PROP_LUT7 OVRL_LUT Color LUT for color 7

0x0E OVRL_PROP_BLINK_RATE UINT8 Bitmap blink rate (in multiples of 5 frames).

0x0F OVRL_PROP_TIMEOUT UINT8 Time−out (in multiples of 5 frames)

0x10 OVRL_PROP_DECIMATE FLAG Flag to indicate if character string font should be decimated by a
factor of two

0x11 OVRL_PROP_CROP_MODE OVRL_CROP_MODE Bitmap cropping mode

0x12 OVRL_PROP_CROP_X_OFFSET UINT16 Horizontal offset of crop window relative to the bitmap (in pixels)

0x13 OVRL_PROP_CROP_Y_OFFSET UINT16 Vertical offset of crop window relative to the bitmap (in pixels)

0x14 OVRL_PROP_CROP_X_LEN UINT16 Width of crop window (in pixels)

0x15 OVRL_PROP_CROP_Y_LEN UINT16 Height of crop window (in pixels)

0x16 OVRL_PROP_FADER_ENABLE FLAG Flag to indicate if the bitmap has the fader enabled

0x17 OVRL_PROP_FADER_START UINT16 Start fading value for the alpha. range 0 to 256:
0: Transparent
256: No change to overlay Scaled_Alpha: Alpha * current
fade/256

0x18 OVRL_PROP_FADER_MAX UINT16 Max fading value for the alpha. range 0 to 256:
0: Transparent
256: No change to overlay Scaled_Alpha: Alpha * current
fade/256

0x19 OVRL_PROP_FADER_STEP UINT16 Fading value will be incremented by fade step for each line
greater than start line until fade reaches fade max.
Step is a 9.4 fixed point number (4 fractional bits)

0x1A OVRL_PROP_FADER_START_LI
N E

UINT16 Line number to start fading the alpha channel

0x1B OVRL_PROP_LUT8 OVRL_LUT Color LUT for color 8

0x1C OVRL_PROP_LUT9 OVRL_LUT Color LUT for color 9

0x1D OVRL_PROP_LUT10 OVRL_LUT Color LUT for color 10

0x1E OVRL_PROP_LUT11 OVRL_LUT Color LUT for color 11

http://www.onsemi.com/

AND9930/D

www.onsemi.com
23

Table 28. OVERLAY PROPERTIES

ID DescriptionTypeMnemonic

0x1F OVRL_PROP_LUT12 OVRL_LUT Color LUT for color 12

0x20 OVRL_PROP_LUT13 OVRL_LUT Color LUT for color 13

0x21 OVRL_PROP_LUT14 OVRL_LUT Color LUT for color 14

0x22 OVRL_PROP_LUT15 OVRL_LUT Color LUT for color 15

0x23 OVRL_PROP_LUT16 OVRL_LUT Color LUT for color 16

0x24 OVRL_PROP_LUT17 OVRL_LUT Color LUT for color 17

0x25 OVRL_PROP_LUT18 OVRL_LUT Color LUT for color 18

0x26 OVRL_PROP_LUT19 OVRL_LUT Color LUT for color 19

0x27 OVRL_PROP_LUT20 OVRL_LUT Color LUT for color 20

0x28 OVRL_PROP_LUT21 OVRL_LUT Color LUT for color 21

0x29 OVRL_PROP_LUT22 OVRL_LUT Color LUT for color 22

0x2A OVRL_PROP_LUT23 OVRL_LUT Color LUT for color 23

0x2B OVRL_PROP_LUT24 OVRL_LUT Color LUT for color 24

0x2C OVRL_PROP_LUT25 OVRL_LUT Color LUT for color 25

0x2D OVRL_PROP_LUT26 OVRL_LUT Color LUT for color 26

0x2E OVRL_PROP_LUT27 OVRL_LUT Color LUT for color 27

0x2F OVRL_PROP_LUT28 OVRL_LUT Color LUT for color 28

0x30 OVRL_PROP_LUT29 OVRL_LUT Color LUT for color 29

0x31 OVRL_PROP_LUT30 OVRL_LUT Color LUT for color 30

0x32 OVRL_PROP_LUT31 OVRL_LUT Color LUT for color 31

ENABLE OVERLAY SUBSYSTEM
This synchronous command enables or disables the

graphical overlay subsystem.

Command

Table 29.

Size Value Mnemonic Description

16 bits 0x8200 OVRL_ENABLE Enable (or disable) the overlay subsystem

Command Parameters

Table 30.

Byte Offset Field Type Value Description

+0 Enable FLAG FALSE Disable overlay subsystem.

TRUE Enable overlay subsystem.

Result Status

Table 31.

Result Status Code Description

ENOERR Command completed successfully

EALREADY Already enabled

EBUSY Previous operation has not completed

Command Response Parameters
None

Notes
The firmware will synchronize the activation or

deactivation of the overlay subsystem to the frame timing of
the selected input stream.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
24

GET OVERLAY SUBSYSTEM STATE
This synchronous command retrieves the status of the

graphical overlay subsystem.

Command

Table 32.

Size Value Mnemonic Description

16 bits 0x8201 OVRL_GET_STATE Retrieve the state of the overlay subsystem

Command Parameters
None.

Result Status

Table 33.

Result Status Code Description

ENOERR Command completed successfully

Command Response Parameters

Table 34.

Byte Offset Field Type Value Description

+0 Enabled FLAG FALSE Overlay disabled

TRUE Overlay enabled

+1 Reserved 0 Reserved

+2 Reserved 0 Reserved

+3 Error Status UINT8 Current error status of Overlay subsystem

Notes
If the Error Status field is not ENOERR, the overlay

subsystem has detected an unrecoverable error and has
terminated its operations. A system restart is required.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
25

SET CALIBRATION
This synchronous command sets the global calibration

offset of the overlay subsystem.

Command

Table 35.

Size Value Mnemonic Description

16 bits 0x8202 OVRL_SET_CALIBRATION Set the calibration offset of the overlay subsystem.

Command Parameters
None.

Result Status

Table 36.

Byte Offset Field Type Value Description

+0 X_OFFSET UINT8 Horizontal calibration offset

+1 Y_OFFSET UINT8 Vertical calibration offset

Command Response Parameters

Table 37.

Result Status
Code Description

ENOERR Command completed successfully

ERANGE Either X_OFFSET or Y_OFFSET are outside the permitted calibration offset range

Notes
 The firmware will synchronize the update of the

calibration offset with the underlying hardware during
frame blanking to prevent image corruption.

 The calibration offset adjusts the position of all
calibrated bitmaps−that is, all bitmaps with their
OVRL_PROP_IS_CALIBRATED property set to
TRUE. “Appendix D: Overlay Calibration” on page 116
provides more details.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
26

SET BITMAP PROPERTY

Command

Table 38.

Size Value Mnemonic Description

16 bits 0x8203 OVRL_SET_BITMAP_PROP Set a property of a bitmap

Command Parameters

Table 39.

Byte
Offset Field Type Value Description

+0 Overlay Buffer UINT8 0...6 The buffer that contains the bitmap.

+1 Property ID UINT8 See “Overlay Properties” on
page 25

The property to modify.

+2 Pad16 UINT16 Padding for alignment

+4... Value − See “Overlay Properties” on
page 25

The value of the property.

Result Status
This synchronous command sets a property of a bitmap.

Table 40.

Result Status Code Description

ENOERR Command completed successfully

EINVAL Invalid property identifier

ENOENT Specified buffer is empty

ERANGE Property value is out of range

EACCES Permission denied

EBUSY Cannot support update at this time

Command Response Parameters
None.

Notes
 The firmware only supports property updates to one

active bitmap per frame. An active bitmap is one that is
being displayed by an overlay layer. The firmware will
synchronize the update to the underlying hardware

during frame blanking to prevent image corruption. An
attempt to update properties of a second bitmap during
the same frame will be rejected with EBUSY.

 An inactive bitmap property can be adjusted at any
time.

 The OVRL_PROP_X_LEN bitmap property cannot be
adjusted.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
27

GET BITMAP PROPERTY
This synchronous command retrieves a property of a

bitmap.

Command

Table 41.

Size Value Mnemonic Description

16 bits 0x8204 OVRL_GET_BITMAP_PROP Get a property of a bitmap

Command Parameters

Table 42.

Byte Offset Field Type Value Description

+0 Overlay Buffer UINT8 0...6 The buffer that contains the bitmap

+1 Property ID UINT8 See “Overlay Properties” on page 25. The property to retrieve

Result Status

Table 43.

Result Status Code Description

ENOERR Command completed successfully

EINVAL Invalid property identifier

ENOENT Specified buffer is empty

Command Response Parameters

Table 44.

Byte Offset Field Type Value Description

+0 Value Variant – The value of the property

Notes
 A bitmap property can be retrieved at any time. If the

bitmap is active (that is, it is being displayed by an
overlay layer) AND has just been updated, then the
retrieved value may represent the previous value and
not the new value.

 The OVRL_PROP_TIMEOUT property represents the
remaining number of frames before the bitmap times
out, and NOT the initial value.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
28

SET STRING PROPERTY
These synchronous commands set a property of an

overlay character string.

Command

Table 45.

Size Value Mnemonic Description

16 bits 0x8205 OVRL_SET_STRING_PROP Set a property of character string0

16 bits 0x8215 OVRL_SET_STRING1_PROP Set a property of character string 1

16 bits 0x8216 OVRL_SET_STRING2_PROP Set a property of character string 2

16 bits 0x8217 OVRL_SET_STRING3_PROP Set a property of character string 3

Command Parameters

Table 46.

Byte Off-
set Field Type Value Description

+0 Property ID UINT8 See “Overlay Properties” on page 25. The property to modify

+1 Pad8 UINT8 Padding for alignment

+2 Pad16 UIN16 Padding for alignment

+4... Value – See “Overlay Properties” on page 25. The (variant) value of the property

Result Status

Table 47.

Result Status Code Description

ENOERR Command completed successfully

EINVAL Invalid property identifier

ERANGE Property value is out of range

Command Response Parameters
None.

Notes
 A character string property can be adjusted at any time.

The firmware will synchro− nize the update to the
underlying hardware during frame blanking to prevent
image corruption.

 Overlay character strings do not support the following
properties:

 OVRL_PROP_X_LEN
 OVRL_PROP_Y_LEN
 OVRL_PROP_SIZE
 OVRL_PROP_IS_CALIBRATED
 OVRL_PROP_LUT2 ... OVRL_PROP_LUT31
 OVRL_PROP_CROP_xxx
 OVRL_PROP_FADER_xxx

http://www.onsemi.com/

AND9930/D

www.onsemi.com
29

LOAD BITMAP BUFFER
This asynchronous command requests that the firmware

load a bitmap image stored in NVM, and optionally display
the image after loading.

Command

Table 48.

Size Value Mnemonic Description

16 bits 0x8206 OVRL_LOAD_BUFFER Load a buffer with a bitmap

Command Parameters

Table 49.

Byte
Offset Field Type Value Description

+0 Overlay Buffer UINT8 0...6 The buffer to contain the bitmap

+1 Layer UINT8 0...10 The overlay layer on which to display the bitmap (if Enable is TRUE, otherwise
ignored)

+2 Bitmap ID UINT16 Identifies the bitmap to load

+4 Enable FLAG If TRUE, the bitmap will automatically be displayed when it has successfully load-
ed

Result Status

Table 50.

Result Status Code Description

ENOERR Command accepted and in operation

ENODEV NVM device was not found − buffer not loaded

EALREADY Attempting to enable a layer that is already active − buffer not loaded

EINVAL Invalid overlay, layer or bitmap ID specified

EBUSY Previous Load Bitmap Buffer or Load String request has not completed

Command Response Parameters
None.

Notes
 If the specified buffer is enabled when the command is

issued, the firmware will first disable the buffer, and
wait for the hardware to release it, before the new
bitmap is loaded.

 The bitmap ID is determined by the
OVERLAY_BITMAP_TOC record; it is the (zero−
based) index of the bitmap in the
OVERLAY_BITMAP_TOC.

 If a previous Load Bitmap Buffer or Load String
command is still active, the request will be rejected
with EBUSY.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
30

LOAD STATUS
This synchronous command retrieves the status of a

previous Load Bitmap Buffer or Load String request.

Command

Table 51.

Size Value Mnemonic Description

16 bits 0x8207 OVRL_LOAD_STATUS Get status of a Load Bitmap Buffer or Load String request

Command Parameters
None.

Result Status

Table 52.

Result Status Code Description

ENOERR Load Bitmap Buffer or Load Stringcommand has completed

ENOENT Specified bitmap or string could not be located in Flash −not loaded

EIO Bitmap or string could not be transferred −not loaded

EINVAL Invalid buffer or string

EBUSY Previous Load Bitmap Buffer or Load String request has not completed

Command Response Parameters
None.

Note
 The host can issue another Load Bitmap Buffer or Load

String request if this command does not return EBUSY.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
31

WRITE BITMAP BUFFER
This synchronous command requests that the firmware

copies bitmap data supplied in the Parameters Pool to a

bitmap buffer. This command allows a host to fill a bitmap
buffer directly.

Command

Table 53.

Size Value Mnemonic Description

16 bits 0x8208 OVRL_WRITE_BUFFER Write to a bitmap buffer

Command Parameters

Table 54.

Byte
Offset Field Type Value Description

+0 Overlay UINT8 0...6 The overlay to write to

+1 Length UINT8 Number of bytes to write (limited to PARAMS_POOL_SIZE − 4)

+2 Offset UINT16 Offset within buffer to where data will be written

+4 Data[0] UINT8 First byte of data

+n Data[n−4] UINT8 Last byte of data

Result Status

Table 55.

Result Status Code Description

ENOERR Command completed successfully

EALREADY Overlay is already in use by an active layer − write not permitted

EINVAL Invalid overlay specified

ERANGE Offset is out−of−range

EBUSY Previous Load Bitmap Buffer request has not completed

Command Response Parameters
None.

Notes
 It is not permitted to write to an active buffer – that is, a

buffer assigned to an active layer. The host must first
either disable the layer, or assign a different buffer to
the layer, with the Enable Layer command.

 The firmware returns EBUSY if there is a Load Bitmap
Buffer command in progress.

 The host is responsible for issuing multiple Write
Bitmap Buffer requests, incrementing the Offset
parameter each time.

 The bitmap data includes the RLE header fields, but
excludes the configuration data. This must be written
with Set Bitmap Property.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
32

READ BITMAP BUFFER
This synchronous command requests that the firmware

copies bitmap data from a bitmap overlay buffer to the

Parameters Pool. This command allows a host to retrieve an
overlay buffer’s contents (primarily for diagnostics).

Command

Table 56.

Size Value Mnemonic Description

16 bits 0x8209 OVRL_READ_BUFFER Read from a bitmap buffer

Command Parameters

Table 57.

Byte Off-
set Field Type Value Description

+0 Overlay UINT8 0...6 The overlay to read from

+1 Length UINT8 Number of bytes to read (limited to PARAMS_POOL_SIZE)

+2 Offset UINT16 Offset within buffer of where data will be read

Result Status

Table 58.

Result Status Code Description

ENOERR Command completed successfully

EALREADY Overlay is already in use by an active layer − read not permitted

EINVAL Invalid overlay specified

ERANGE Offset or Length is out of range

EBUSY Previous Load Bitmap Buffer request has not completed

Command Response Parameters

Table 59.

Byte Offset Field Type Value Description

+0 Data[0] UINT8 First byte of data

+n Data[n] UINT8 Last byte of data

Notes
 It is not permitted to read from an active buffer – that

is, a bitmap overlay assigned to an active layer. The
host must first either disable the layer, or assign a
different overlay to the layer, with the Enable Layer
command.

 The firmware cannot support a Read Bitmap Buffer
operation while an active buffer load (whether from
NVM or directly by the host) is in progress.

 The bitmap data includes the RLE header fields, but
excludes the configuration data. This must be read with
Get Bitmap Property

http://www.onsemi.com/

AND9930/D

www.onsemi.com
33

ENABLE LAYER
This synchronous command instructs the firmware to

enable or disable an overlay layer.

Command

Table 60.

Size Value Mnemonic Description

16 bits 0x820A OVRL_ENABLE_LAYER Enable (or disable) an overlay layer

Command Parameters

Table 61.

Byte Off-
set Field Type Value Description

+0 Layer UINT8 0...10 The layer to enable or disable

+1 Buffer UINT8 0...10 The overlay to be displayed

+2 Enable FLAG If TRUE, the overlay will be displayed on Layer (in Byte offset 0)

Result Status

Table 62.

Result Status Code Description

ENOERR Command completed successfully

ENOENT Specified bitmap image overlay is empty

EALREADY Layer is already disabled (if Enable is FALSE)

EINVAL Invalid overlay is specified

EBUSY Device busy with another operation

Command Response Parameters
None.

Notes
 A layer can be enabled or disabled at any time. The

firmware will synchronize the update to the underlying
hardware during frame blanking to prevent image
corrup− tion.

 The overlay being displayed on each layer can be
changed without requiring the layer to be disabled – the

Enable Layer command can simply be reissued with a
different buffer number specified.

 If a Layer is assigned an overlay that is currently used
by another layer, this layer will be automatically
disabled. Two layers cannot use the same overlay.

 Line and arc overlays (7, 8, 9, and 10) should be
assigned only to layers 0 to 6.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
34

GET LAYER STATUS
This synchronous command retrieves the status of an

overlay layer.

Command

Table 63.

Size Value Mnemonic Description

16 bits 0x820B OVRL_GET_LAYER_STATUS Retrieve the status of a layer.

Command Parameters

Table 64.

Byte Off-
set Field Type Value Description

+0 Layer UINT8 0...10 The layer to query

Result Status

Table 65.

Result Status Code Description

ENOERR Command completed successfully

EINVAL Invalid layer specified

Command Response Parameters

Table 66.

Byte Off-
set Field Type Value Description

+0 Enable FLAG Indicates if layer is enabled.

+1 Overlay UINT8 0...10 If ’Enable’ is TRUE, indicates the overlay being displayed

+2 Error UINT8 Hardware−specific error status

Notes
The Error field of the Command Response encodes a

hardware−specific error status that may help diagnose
display problems.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
35

SET STRING
These synchronous commands set the overlay character

string.

Command

Table 67.

Size Value Mnemonic Description

16 bits 0x820C OVRL_SET_STRING0 Set overlay character string0

16 bits 0x820F OVRL_SET_STRING1 Set overlay character string 1

16 bits 0x8210 OVRL_SET_STRING2 Set overlay character string 2

16 bits 0x8211 OVRL_SET_STRING3 Set overlay character string 3

Command Parameters

Table 68.

Byte Offset Field Type Value Description

+0 Enable15_0 BITFIELD_16 Enable mask for character positions 15 to 0

+2 Enable31_16 BITFIELD_16 Enable mask for character positions 31 to 16

+4 Enable47_32 BITFIELD_16 Enable mask for character positions 47 to 32

+6 Enable63_48 BITFIELD_16 Enable mask for character positions 63 to 48

+8 CharIndex_0 UINT8 0 – 255 Index of character at position 0

+9 CharIndex_1 UINT8 0 – 255 Index of character at position 1

...

+71 CharIndex_63 UINT8 0 – 255 Index of character at position 63

Result Status

Table 69.

Result Status Code Description

EBUSY Previous Load Bitmap Buffer or Load String command has not completed.

ENOERR Command completed successfully

Command Response Parameters
None.

Notes
 The overlay character string can be updated at any time.

The firmware will synchronize the update to the
underlying hardware during frame blanking to prevent
image corruption.

 The character string can contain up to 64 characters,
each enabled separately.

 Character indexes 0 to 191 are detailed in “Appendix E:
Character String Font” on page 118.

 Character indexes 192 to 255 are in User Character
RAM.

 It is not possible to perform a partial update to the
character string.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
36

GET STRING
These synchronous commands get the current overlay

character string.

Command

Table 70.

Size Value Mnemonic Description

16 bits 0x820D OVRL_GET_STRING0 Get overlay character string 0

16 bits 0x8212 OVRL_GET_STRING1 Get overlay character string 1

16 bits 0x8213 OVRL_GET_STRING2 Get overlay character string 2

16 bits 0x8214 OVRL_GET_STRING3 Get overlay character string 3

Table 71.

Result Status Code Description

ENOERR Command completed successfully

EBUSY Previous Load Bitmap Buffer or Load String request has not completed

Command Parameters Result Status
These synchronous commands get the current overlay

character string.

Command Response Parameters

None

Table 72.

Byte Offset Field Type Value Description

+0 Enable15_0 BITFIELD_16 Enable mask for character positions 15 to 0

+2 Enable31_16 BITFIELD_16 Enable mask for character positions 31 to 16

+4 Enable47_32 BITFIELD_16 Enable mask for character positions 47 to 32

+6 Enable63_48 BITFIELD_16 Enable mask for character positions 63 to 48

+8 CharIndex_0 UINT8 0 – 255 Index of character at position 0

+9 CharIndex_1 UINT8 0 – 255 Index of character at position 1

...

+71 CharIndex_63 UINT8 0 – 255 Index of character at position 63

Notes
The available characters are detailed in Appendix D: Set

State Command Failure Codes.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
37

LOAD STRING
These asynchronous commands request that the firmware

loads and displays an overlay string stored in NVM.

Command

Table 73.

Size Value Mnemonic Description

16 bits 0x820E OVRL_LOAD_STRING0 Load string0

16 bits 0x821B OVRL_LOAD_STRING1 Load string 1

16 bits 0x821C OVRL_LOAD_STRING2 Load string 2

16 bits 0x821D OVRL_LOAD_STRING3 Load string 3

Command Parameters

Table 74.

Byte Offset Field Type Value Description

+0 String ID UINT16 Identifies the string to load

Result Status

Table 75.

Result Status Code Description

ENOERR Command accepted and in operation

ENODEV NVM device was not found − string not loaded

EINVAL Invalid string ID specified

EBUSY Previous Load Bitmap Buffer or Load String request has not completed

Command Response Parameters
None.

Notes
 The string ID is determined by the

OVERLAY_STRING_TOC record; it is the (zero−

based) index of the string in the
OVERLAY_STRING_TOC.

 If a previous Load Bitmap Buffer or Load String
command is still active, the request will be rejected
with EBUSY.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
38

DRAW SHAPE
This synchronous command configures line and arc

overlay engines to draw lines and arcs.

Command

Table 76.

Size Value Mnemonic Description

16 bits 0x8218 OVRL_DRAW_SHAPE Draw lines and arcs

Command Parameters
The parameters for this command are descriptors to

describe the lines and arcs to be drawn.
Multiple lines and arcs can be drawn by concatenating the

descriptors together to form a single command parameter
set. The byte immediately following the last descriptor must
be 0 to terminate the parameter set.

Table 77.

Parameter Set

line/arc descriptor 0

line/arc descriptor 1

...

line/arc descriptor n

0x00

The entire length of the parameter set must not exceed
PARAMS_POOL_SIZE. Specifications for the descriptors
are in the Notes for this section.

Result Status

Table 78.

Result Status Code Description

ENOERR Command completed successfully

EINVAL Invalid line or arc descriptor

Command Response Parameters
None

Notes
 Firmware will calculate hardware registers to generate

lines and arcs, then update them during frame blanking.
 Calibration offsets do not affect line and arc overlays.

 Coordinate system for overlays use (0, 0) as top left
corner.

Line Descriptor Details
The following properties are required to create a line

descriptor for Line Engine:
 uint8 line_overlay // which line overlay to use, legal

values 0 or 1
 uint8 engine // which line engine to use, legal values 0

to 9

 uint8 width // line width, legal values 1 to 16

 uint8 color // use YCbCrAlpha value at
color_LUT[color]

 uint16 x0, y0 // start pixel coordinate

 uint16 x1, y1 // end pixel coordinate

 bool valid // if true, line is drawn, otherwise line
is disabled

 bool box// if true, a box is drawn with corners (x0,y0)
and (x1,y1)

 bool anti_alias // if true, draw with anti−aliasing
enabled

 uint16 control = (valid << 9) | (box << 10) | (anti_alias
<< 8) | ((width−1) << 4) | color

Table 79.

Byte Value Description

0 0xC1 line descriptor type

1 (line_overlay << 4) | engine line_overlay = 0 or 1, engine = 0...9

http://www.onsemi.com/

AND9930/D

www.onsemi.com
39

Table 79.

Byte DescriptionValue

2 control >> 8 upper byte of control

3 control & 0xFF lower byte of control

4 x0 >> 8 upper byte of x0

5 x0 & 0xFF lower byte of x0

6 y0 >> 8 upper byte of y0

7 y0 & 0xFF lower byte of y0

8 x1 >> 8 upper byte of x1

9 x1 & 0xFF lower byte of x1

10 y1 >> 8 upper byte of y1

11 y1 & 0xFF lower byte of y1

Arc Descriptor Details
The following properties are required to create an arc

descriptor for Arc Engine:
 uint8 arc_overlay // which arc overlay to use, legal

values 0 or
 uint8 engine // which arc engine to use, legal values 0

to 4
 uint8 width // arc width, legal values 1 to 16

 uint8 color // use YCbCrAlpha value at
color_LUT[color]

 int32 x, y // arc center pixel coordinate

 float start_degrees // start angle in degrees

 float degrees // length of arc, positive = clockwise,
negative = counter−clockwise

 uint16 radius // legal values 1 to 65535

 bool valid // if true, arc is drawn, otherwise arc is
disabled

 bool anti_alias // if true, draw with anti−aliasing
enabled

 uint16 control = (valid << 9) | (anti_alias << 8) |
((width−1) << 4) | color

Table 80.

Byte Value Description

0 0xC2 arc descriptor type

1 (arc_overlay << 4) | engine arc_overlay = 0 or 1, engine = 0...4

2 control >> 8 upper byte of control

3 control & 0xFF lower byte of control

4 x >> 24 bits 31:24 of x

5 x >> 16 bits 23:16 of x

6 x >> 8 bits 15:8 of x

7 x & 0xFF bits 7:0 of x

8 y >> 24 bits 31:24 of y

9 y >> 16 bits 23:16 of y

10 y >> 8 bits 15:8 of y

11 y & 0xFF bits 7:0 of y

12 radius >> 8 upper byte of radius

13 radius & 0xFF lower byte of radius

14 start_degrees >> 24 bits 31:24 of start_degrees

15 start_degrees >> 16 bits 23:16 of start_degrees

16 start_degrees >> 8 bits 15:8 of start_degrees

http://www.onsemi.com/

AND9930/D

www.onsemi.com
40

Table 80.

Byte DescriptionValue

17 start_degrees & 0xFF bits 7:0 of start_degrees

18 degrees >> 24 bits 31:24 of degrees

19 degrees >> 16 bits 23:16 of degrees

20 degrees >> 8 bits 15:8 of degrees

21 degrees & 0xFF bits 7:0 of degrees

SET COLOR LOOKUP TABLE
This synchronous command sets the colors in a color LUT

for line and arc overlays. Line and arc overlays have a color
LUT with 16 entries each.

Command

Table 81.

Size Value Mnemonic Description

16 bits 0x8219 OVRL_SET_COLOR_LUT Set color LUT entries

Command Parameters

Table 82.

Byte Offset Field Type Value Description

+0 Type UINT8 0 or 1 0: Line
1: Arc

+1 Number UINT8 0 or 1 Line or arc overlay number

+2 Start_Index UINT8 0 to 15 Set colors starting at LUT Start_Index]

+3 Entries UINT8 1 to 16 Number of colors to set

+4 Color 0 UINT32 Y, Cb, Cr, Alpha

+8 Color 1 UINT32 Y, Cb, Cr, Alpha

... Color (Entries−1) UINT32 Y, Cb, Cr, Alpha

Result Status

Table 83.

Result Status Code Description

ENOERR Command completed successfully

EINVAL Invalid Start_Index or Entries

Command Response Parameters
None

Notes
 To set color LUT for line 0 overlay: Type = 0, Number

= 0

 To set color LUT for line 1 overlay: Type = 0, Number
= 1

 To set color LUT for arc 0 overlay: Type = 1, Number =
0

 To set color LUT for arc 1 overlay: Type = 1, Number =
1

http://www.onsemi.com/

AND9930/D

www.onsemi.com
41

WRITE USER CHARACTER RAM
This synchronous command writes data to User Character

RAM.

Command

Table 84.

Size Value Mnemonic Description

16 bits 0x821A OVRL_WRITE_USER_CHAR Write to User Character RAM

Command Parameters

Table 85.

Byte Off-
set Field Type Value Description

+0 Offset UINT16 Offset in User Character RAM to where data will be written

+2 Length UINT16 Number of bytes to write (limited to PARAMS_POOL_SIZE − 4)

+4 Data[0] UINT8 First byte of data

+5 Data[1] UINT8 Second byte of data

...

Result Status

Table 86.

Result Status Code Description

ENOERR Command completed successfully

EBUSY Overlay subsystem is enabled

EINVAL Invalid Offset or Length

Command Response Parameters
None

Notes
The overlay subsystem must be disabled before issuing

this command.
User character RAM can store 64 32x32 pixel characters.

Each character uses 128 bytes. The offset for the Nth user
character is N * 128, where N=0 to 63.

User characters are referenced by using indexes 192 – 255
in the Set String command.
 index 192 = user character at offset 0

 index 193 = user character at offset 128
The 32x32 character uses 1 bit per−pixel.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
42

Figure 7. User Character RAM Example

Data for user character shown above is uint8 user_char[128]= {

// columns

0−7 8−15 16−23 24−31

0x00, 0x01, 0x80, 0x00 //row 0

0x00, 0x03, 0xC0, 0x00 //row 1

0x00, 0x07, 0xE0 , 0x00 //row 2

0x00, 0x0F, 0xF0 ,0x00 ’/row 3

0x00, 0x1D, 0xB8, 0x00 ’/row 4

0x00, 0x19, 0x98, 0x00 r/row 5

0x00, 0x01, 0x80, 0x00 //row 6

0x00, 0x01, 0x80, 0x00 //row 7

0x00, 0x01, 0x80, 0x00 // row 8

0x00, 0x01, 0x80, 0x00 // row 9

0x00, 0x01, 0x80, 0x00 // row 10

0x0C, 0x01, 0x80, 0x30 // row 11

0x1C, 0x01, 0x80, 0x38 // row 12

0x38, 0x01, 0x80, 0x1C // row 13

http://www.onsemi.com/

AND9930/D

www.onsemi.com
43

0x70, 0x01, 0x80, 0x0E // row 14

0xFF, 0xFF, 0xFF, 0xFF // row 15

0xFF, 0xFF, 0xFF, 0xFF // row 16

0x70, 0x01, 0x80, 0x0E // row 17

0x38, 0x01, 0x80, 0x1C // row 18

0x1C, 0x01, 0x80, 0x38 // row 19

0x0C, 0x01, 0x80, 0x30 // row 20

0x00, 0x01, 0x80, 0x00 // row 21

0x00, 0x01, 0x80, 0x00 // row 22

0x00, 0x01, 0x80, 0x00 // row 23

0x00, 0x01, 0x80, 0x00 // row 24

0x00, 0x01, 0x80, 0x00 // row 25

0x00, 0x19, 0x98, 0x00 // row 26

0x00, 0x1D, 0xB8, 0x00 // row 27

0x00, 0x0F, 0xF0, 0x00 // row 28

0x00, 0x07, 0xE0, 0x00 // row 29

0x00, 0x03, 0xC0, 0x00 // row 30

0x00, 0x01, 0x80, 0x00 // row 31

};

http://www.onsemi.com/

AND9930/D

www.onsemi.com
44

LOAD COLOR LOOKUP TABLE
This asynchronous command loads a color LUT stored in

NVM into a line or arc overlay.

Command

Table 87.

Size Value Mnemonic Description

16 bits 0x821E OVRL_LOAD_COLORLUT Load color LUT entries

Command Parameters

Table 88.

Byte Offset Field Type Value Description

+0 Type UINT8 0 or 1 0: Line
1: Arc

+1 Number UINT8 0 or 1 Line or arc overlay number

+2 Table ID UINT16 Identifies the color LUT to load

Result Status

Table 89.

Result Status Code Description

ENOERR Command accepted and in operation

ENODEV NVM device was not found − table not loaded

EINVAL Invalid Table ID specified

EBUSY A previous Load request has not completed

Command Response Parameters
None

Notes
 The table ID is determined by the

OVERLAY_COLORLUT_TOC record - it is the (zero−
based) index of the color LUT in the
OVERLAY_COLORLUT_TOC.

 To load color LUT for line 0 overlay: Type = 0,
Number = 0

 To load color LUT for line 1 overlay: Type = 0,
Number = 1

 To load color LUT for arc 0 overlay: Type = 1, Number
= 0

 To load color LUT for arc 1 overlay: Type = 1, Number
= 1

http://www.onsemi.com/

AND9930/D

www.onsemi.com
45

LOAD USER CHARACTER RAM
This asynchronous command loads data into User

Character RAM from NVM.

Command

Table 90.

Size Value Mnemonic Description

16 bits 0x821F OVRL_LOAD_USER_CHAR Load User Character RAM

Command Parameters

Table 91.

Byte Offset Field Type Value Description

+0 Character RAM ID UINT16 Identifies the RAM image to load

Result Status

Table 92.

Result Status Code Description

ENOERR Command accepted and in operation

ENODEV NVM device was not found − table not loaded

EINVAL Invalid Character RAM ID specified

EBUSY A previous Load request has not completed or overlay is enabled

Command Response Parameters
None

Notes
The Character RAM ID is determined by the

OVERLAY_USERCHAR_TOC record − it is the

(zero−based) index of the character data in the
OVERLAY_USERCHAR_TOC.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
46

SPATIAL TRANSFORM ENGINE INTERFACE
The following subsections detail the various commands to

control and configure the Spatial Transform Engine (STE)
function of the AS0148AT.

OVERVIEW
The STE Manager firmware component controls the

operation of the STE function. The firmware uses a
configuration blob to configure the system for STE
operation. Configuration blobs are generated by the STE
GUI tool provided by onsemi. Each blob contains the
necessary data to configure the sensor, PLLs, STE hardware
and other components of the system.

The host can request a ’configuration blob’ to be loaded
from a number of sources:
 From non−volatile memory (OTPM or NVM) under

firmware control.

 From a set of defaults stored in ROM, under firmware
control.

 Through the Write Config host command (transferred
by the host through the CCI).
On loading, configuration blobs are stored within the

firmware’s configuration cache. Note that the configuration
is not applied to the system automatically on successful
completion of the operation. The configuration is applied
during the next Change−Config operation subsequent to the
load.

SUMMARY
Table 93 summarizes the host commands relating to the

STE subsystem of the AS0148AT.

Table 93. STE MANAGER HOST COMMANDS

STE Manager Host
Command Value Type Description

Config 0x8310 Synchronous Configure using the default NTSC or PAL configuration stored in ROM

Load Config 0x8311 Asynchronous Load a configuration from NVM to the configuration cache.

Load Status 0x8312 Synchronous Get status of a Load Config request

Write Config 0x8313 Synchronous Write configuration (through the CCI) to the configuration cache.

Config
This synchronous command requests that the firmware

configure STE using the default configuration stored in
ROM.

Command

Table 94.

Result Status Code Description

ENOERR Command completed successfully

ENOENT No configuration in ROM for this sensor, or sensor unknown.

EBUSY Previous Load Config request has not completed

Command Parameters
None

Result Status

Table 95.

Size Value Mnemonic Description

16 bits 0x8310 STE_CONFIG Configure using the default configuration stored in ROM

Command Response Parameters
None

http://www.onsemi.com/

AND9930/D

www.onsemi.com
47

Notes
 The firmware uses the

CAM_SENSOR_CONTROL_MODEL_ID firmware
variable to determine which configuration to load. The

command will fail with ENOENT if the sensor is
unknown (sensor discovery has not been performed), or
the sensor model or revision is not supported.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
48

LOAD CONFIG
This asynchronous command requests that the firmware

initiate a configuration load from NVM. A subsequent

Change−Config operation is required to complete the
operation.

Command

Table 96.

Size Value Mnemonic Description

16 bits 0x8311 STE_LOAD_CONFIG Load a configuration from NVM to the configuration cache

Command Parameters

Table 97.

Byte Offset Field Type Value Description

+0 Config ID UINT16 Identifies the configuration set

Result Status

Table 98.

Result Status Code Description

ENOERR Command accepted and in operation

EINVAL Configuration set specified by Config ID is not valid

ENODEV NVM device was not found − configuration not loaded

EBUSY Previous load operation still active.

Command Response Parameters
None

Notes
 The configuration set IDs are determined by the

STE_CONFIG_TOC record − the Config ID is the
index of the desired configuration set in the
STE_CONFIG_TOC.

 If a previous STE_LOAD_CONFIG operation is still
active, the request will be rejected with EBUSY.

 If the configuration set specified by the Config ID
parameter is invalid (not within the range of the
STE_CONFIG_TOC) the request will be rejected with
EINVAL.

 The host should use the Load Status command to
determine when the request completes, and the
completion status.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
49

LOAD STATUS
This synchronous command retrieves the status of a

previous Load Config request.

Command

Table 99.

Result Status Code Description

ENOERR Load Config command has completed

ENOENT Specified configuration sets could not be located in NVM − configuration not loaded

ENOMEM Cannot allocate enough internal memory to contain configuration set

EIO Configuration set could not be transferred − configuration not loaded

EBUSY Previous Load Config request has not completed

Command Parameters Result Status
None

Table 100.

Size Value Mnemonic Description

16 bits 0x8312 STE_LOAD_STATUS Get status of a Load Config request

Command Response Parameters
None

Notes
 The host can issue another Load Config request only if

this command does not return EBUSY.

WRITE CONFIG
This synchronous command requests that the firmware

copies configuration data supplied in the Parameters Pool to
the internal configuration cache.

Command

Table 101.

Size Value Mnemonic Description

16 bits 0x8313 STE_WRITE_CONFIG Write a configuration (via CCI) to the configuration cache

Command Parameters

Table 102.

Byte Offset Field Type Value Description

+0 Data[0] UINT8 First byte of data

+n Data[n−1] UINT8 Last byte of data

Result Status

Table 103.

Result Status Code Description

ENOERR Command completed successfully

ENOMEM Cannot allocate enough internal memory to support requested transfer. (The first write command contains total
length of data to be supplied)

EBUSY Previous Load Config request has not completed

http://www.onsemi.com/

AND9930/D

www.onsemi.com
50

Command Response Parameters
None

Notes
 This command allows a host to write to the

configuration cache directly. The data within the first
write command contains the total length of data to be
supplied (encoded within the data stream).

 Data must be supplied by the host in blocks of
PARAMS_POOL_SIZE bytes in a sequential manner.
The last write can be shorter than
PARAMS_POOL_SIZE but contain all the bytes in the
configuration set.

 If the first Write Config command is successful
(completes with ENOERR) then the host MUST
complete the full sequence of writes. During the write
operation the STE subsystem is locked out from
performing any other load or re−configuration tasks.
There is no way to abort a write once it has
commenced.

 The configuration data encoding is identical to the
payload of the STE_CONFIG_V2 record.

GPIO HOST INTERFACE

OVERVIEW
The firmware supports up to 32 logical general−purpose

I/O pins. The mapping between logical pin and physical pin

is product−specific. Each logical pin can be assigned an
owner, and a direction. The firmware will determine whether
the underlying hardware can support the desired logical pin
configuration.

Output Pin Ownership
At any particular time, the state of an input, output, or

input/output pin is exclusively controlled by either:
 The AS0148AT hardware

The pin is controlled by a hardware function (or
firmware) within the AS0148AT, for example, the
trigger pin on GPIO0.

 The Host
The pin is controlled by the Host.

Note: The Host can sample an input pin state at any time,
regardless of its ownership.

GPIO Pin Mapping
Table 104 shows the mapping between the AS0148AT

physical pins and the logical GPIO pins as supported by the
GPIO Manager.

Table 104. GPIO PIN MAPPING

Pin (Name) Type Mapping Alternate Function

GPIO_0 Input/Output GPIO0 Trigger Out (output)

GPIO_1 Input/Output GPIO1 −

GPIO_2 Input/Output GPIO2 −

GPIO_3 Input/Output GPIO3 −

GPIO_4 Input/Output GPIO4 −

GPIO_5 Input/Output GPIO5 −

GPIO_6 Input/Output GPIO6 −

Unassigned − GPIO7..GPIO31 −

General Purpose Input Monitoring
The AS0148AT firmware implements a general purpose

(GP) input monitoring function. Host Command Sequences
can be associated with a pin mask/value pair. When the
masked pin state matches that of a registered value, the
firmware will load and process the associated
COMMAND_SEQ_Vx record (stored in NVM).

The firmware samples the GPIO pin state every
GPIO_GPI_SAMPLE_PERIOD milliseconds, and
evaluates each enabled association (the firmware supports
GPIO_MAX_G− PI_ASSOCIATIONS associations). Note
that the firmware implements a ’de−bounce’ feature, so an

association will only become active if the pin state is
identical for two successive samples.

The firmware continues GP input sampling while the
COMMAND_SEQ_Vx record is being processed (to
implement the de−bounce feature). However, no further
associations are evaluated during this time. Therefore, a
subsequent COMMAND_SEQ_Vx record will not be
processed until the next sample period following completion
of a prior sequence.

SUMMARY
Table 105 summarizes the Host commands relating to the

GPIO subsystem of the AS0148AT.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
51

Table 105. GPIO HOST COMMANDS

GPIO Host Command Value Type Description

Set GPIO Property 0x8400 Synchronous Set a property of one or more GPIO pins

Get GPIO Property 0x8401 Synchronous Retrieve a property of a GPIO pin

Set GPIO State 0x8402 Synchronous Set the state of a GPO pin or pins

Get GPIO State 0x8403 Synchronous Get the state of a GPI pin or pins

Set GPIO Association 0x8404 Synchronous Associate a GPIO pin state with a Command Sequence stored in NVM

Get GPIO Association 0x8405 Synchronous Retrieve a GPIO pin association

GPIO Command Parameters

Extended Types
Table 106 lists the extended parameter types specific to

the GPIO subsystem.

Table 106. GPIO PARAMETER TYPES

Extended Type Size Field Base Type Description

GPIO_OWNER 8 bits – UINT8 Owner of the GPIO pin:
0: Not owned by Host
1: Owned by Host

GPIO_DIRECTION 8 bits – UINT8 Direction of the GPIO pin:
0: Output
1: Input

GPIO_ENABLE 8 bits – UINT8 Enable a GPIO pin group:
0: Disabled
1: Enabled

GPIO Properties
The GPIO Manager supports properties of each GP input

and/or output. Table 107 details these properties; property
identifiers are encoded within a UINT8 type.

Table 107. GPIO PROPERTIES

ID Mnemonic Type Description

0x00 GPIO_PROP_OWNER GPIO_OWNER Owner of the pin

0x01 GPIO_PROP_DIRECTION GPIO_DIRECTION Direction of the pin

0x02 GPIO_PROP_ENABLE GPIO_ENABLE Enable or disable a pin

http://www.onsemi.com/

AND9930/D

www.onsemi.com
52

SET GPIO PROPERTY
This synchronous command sets a property of GPIO pins.

Command

Table 108.

Size Value Mnemonic Description

16 bits 0x8400 GPIO_SET_PROP Set property of GPIO pins.

Command Parameters

Table 109.

Byte Offset Field Type Value Description

+0 Mask BITFIELD_32 The mask of logical pins to set (set bits in mask
map to logical pins to configure)

+4 Property ID UINT8 See “GPIO Properties” on page 58 The property to modify

+5 Value UINT8 See “GPIO Properties” on page 58 The value of the property

Result Status

Table 110.

Result Status Code Description

ENOERR Command completed successfully

EINVAL Invalid property identifier

ENOSYS Mask specifies unsupported pins

EACCES Host does not own the pin(s), or pins are already in use internally.

ERANGE Property value is out of range

Command Response Parameters
None.

Notes
 A GPIO property can be adjusted at any time.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
53

GET GPIO PROPERTY
This synchronous command retrieves a property of a

GPIO pin.

Command

Table 111.

Size Value Mnemonic Description

16 bits 0x8401 GPIO_GET_PROP Get a property of a pin

Command Parameters

Table 112.

Byte Offset Field Type Value Description

+0 Mask BITFIELD_32 The mask of the logical pin to interrogate

+4 Property ID UINT8 See “GPIO Properties” on page 58 The property to retrieve

Result Status

Table 113.

Result Status Code Description

ENOERR Command completed successfully

EINVAL Invalid property identifier

ERANGE Mask contains more than one pin identifier

Command Response Parameters

Table 114.

Byte Offset Field Type Value Description

+0 Value Variant – The value of the property

Notes
None.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
54

SET GPIO STATE
This synchronous command sets the state of GPIO pins

that are configured for output.

Command

Table 115.

Size Value Mnemonic Description

16 bits 0x8402 GPIO_SET_STATE Set the state of GPIO pins.

Command Parameters

Table 116.

Byte Offset Field Type Value Description

+0 Mask BITFIELD_32 The mask of logical pins to set (set bits in mask map to logical pins to set)

+4 State BITFIELD_32 The state of the logical pins (after Mask is applied)

Result Status

Table 117.

Result Status Code Description

ENOERR Command completed successfully

EACCES Host does not own specified output pin(s)

ENOSYS Mask specifies unsupported pin(s)

Command Response Parameters
None.

Notes
 A Host−owned GPIO pin (configured for output) can be

adjusted at any time.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
55

GET GPIO STATE
This synchronous command retrieves the state of GPIO

pins (configured for output or input).

Command

Table 118.

Size Value Mnemonic Description

16 bits 0x8403 GPIO_GET_STATE Get the state of GPIO pins.

Command Parameters

Table 119.

Byte Offset Field Type Value Description

+0 Mask BITFIELD_32 The mask of the logical pins to interrogate

Result Status

Table 120.

Result Status Code Description

ENOERR Command completed successfully

ENOSYS Mask specifies unsupported pin(s)

Command Response Parameters

Table 121.

Byte Offset Field Type Value Description

+0 Value BITFIELD_32 The GPIO pin state (after Mask is applied)

Notes
 The Host can query the state of any GPIO pin

(configured for input or output) at any time.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
56

SET GPIO ASSOCIATION
This synchronous command instructs the firmware to

enable or disable a GPIO pin association with a Command
Sequence stored in NVM.

Command

Table 122.

Size Value Mnemonic Description

16 bits 0x8404 GPIO_SET_GPI_ASSOC Set GPIO association with a Command Sequence.

Command Parameters

Table 123.

Byte Offset Field Type Value Description

+0 Association ID UINT8 0 ... m−1 Association to modify (where m is GPIO_MAX_GPI_ASSOCIA-
TIONS)

+1 Enable FLAG TRUE to enable the association, FALSE to disable

+2 Sequence ID UINT16 Identifies the Command Sequence to load and process

+4 GPIO mask UINT32 Identifies the GPIO bits that define this association

+8 GPIO state UINT32 The state of the GPIO bits that will activate this association

Result Status

Table 124.

Result Status Code Description

ENOERR Command completed successfully

EINVAL Invalid association ID

ENOENT No association exists (if Enable is FALSE)

ENODEV Specified GPIO mask cannot be supported

EBUSY A recently disabled association is still executing and can not be modified yet. Try again, or try a different asso-
ciation id.

EACCES Host does not own appropriate pin group

EALREADY Association is already in use

Command Response Parameters
None.

Notes
 The firmware will support

GPIO_MAX_GPI_ASSOCIATIONS associations
between GPIO states and a Command Sequence.

 The Sequence ID command parameter is not validated
by the firmware.

 The GPIO Mask and GPIO State command parameters
define which GPIO pins will be monitored by the
firmware, and the state of those pins that will activate

the association. Any other state will deactivate the
association.

 When an association is deactivated, the firmware will
take no action.

 When an association is activated, the firmware will
instruct the Command Handler task to load and process
the specified COMMAND_SEQ_Vx record from
NVM.

 If a GPIO state change occurs such that multiple
associations become active, the firm− ware will process
these associations in sequential order, beginning from
association 0.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
57

GET GPIO ASSOCIATION
This synchronous command retrieves the state of a GPIO

association.

Command

Table 125.

Size Value Mnemonic Description

16 bits 0x8405 GPIO_GET_GPI_ASSOC Get GPIO association state

Command Parameters

Table 126.

Byte Offset Field Type Value Description

+0 Association ID UINT8 0 .. m−1 Association to retrieve (where m is GPIO_MAX_GPI_ASSOCIA-
TIONS)

Result Status

Table 127.

Result Status Code Description

ENOERR Command completed successfully

EINVAL Invalid association ID

Command Response Parameters

Table 128.

Byte Offset Field Type Value Description

+0 Association ID UINT8 0 .. m−1 Association retrieved (where m is GPIO_MAX_GPI_ASSOCIATIONS)

+1 Enable FLAG TRUE if association is enabled, FALSE if disabled

+2 Sequence ID UINT16 Identifies the Command Sequence to load and process (if Enable is TRUE)

+4 GPIO Mask UINT32 Identifies the GPIO bit that defines this association (if Enable is TRUE)

+8 GPIO State UINT32 The state of the GPIO bit that will activate this association (if Enable is
TRUE)

Notes
None

http://www.onsemi.com/

AND9930/D

www.onsemi.com
58

FLASH MANAGER INTERFACE
The flash manager exports a Host interface to allow

in−field interrogation, configuration, and programming of
the NVM device attached to the AS0148AT. Typically this
will be a Flash or EEPROM device.

The capabilities of the flash manager are dependent upon
the underlying NVM device driver supported by the
firmware. In some cases, a firmware patch must be applied
before the flash manager will support its full interface.

OVERVIEW
The NVM resource is shared by a number of components

of the AS0148AT firmware; therefore, access to the NVM
must be strictly controlled. The Host must obtain an
exclusive lock from the flash manager before it can gain
access to the SPI device.

FLASH MANAGER HOST COMMANDS
Table 129 summarizes the Host commands relating to the

flash manager subsystem of the AS0148AT.

Table 129. FLASH MANAGER HOST COMMANDS

Flash Mgr Host Com-
mand Command Type Description

Get Lock 0x8500 Asynchronous Request the flash manager access lock

Lock Status 0x8501 Synchronous Retrieve the status of the access lock request

Release Lock 0x8502 Synchronous Release the flash manager access lock

Config 0x8503 Synchronous Configure the flash manager and underlying NVM subsystem

Read 0x8504 Asynchronous Read data from the NVM device

Write 0x8505 Asynchronous Write data to the NVM device

Erase Block 0x8506 Asynchronous Erase a block of data from the NVM device

Erase Device 0x8507 Asynchronous Erase the NVM device

Query Device 0x8508 Asynchronous Query device−specific information

Flash Status 0x8509 Synchronous Obtain status of current asynchronous operation

Config Device 0x850A Synchronous Configure the attached NVM device

Validate Records 0x850D Asynchronous Validate records

Validation Status 0x850E Synchronous Obtain status of current asynchronous validate records operation

Issue Device Command 0x850F Asynchronous Issue an 8−bit command to an SPI device, with optional transmit payload

Get Device Command
Response

0x8510 Synchronous Retrieve the response to an Issue Device Command request

http://www.onsemi.com/

AND9930/D

www.onsemi.com
59

FLASH MANAGER PARAMETERS

EXTENDED TYPES
Table 130 lists the extended parameter types specific to

the flash manager subsystem.

Table 130. FLASH MANAGER PARAMETER TYPES

Extended Type Size Field Base Type Description

FLASHMGR_CONFIG 48 bits SPI_SPEED UINT32 Clock speed of the SPI bus: Min: SPI_SPEED_MIN
Max: SPI_SPEED_MAX

SPI_MODE UINT8 Mode of the SPI bus: 0: SPI Mode 0
3: SPI Mode 3

SPI_READ UINT8 Read mode:
0: Standard (0x03 command) 1: Fast (0x0B com-
mand)

DEVICE_CONFIG 64 bits DRIVER_ID UINT8 Device driver identifier:
0: SPI_READONLY, mounted by default 1:
SPI_FLASH_RW
2: SPI_EEPROM_RW

READ_CMD UINT8 Read command:
0: Standard (0x03 command) 1: Fast (0x0B com-
mand)

ADDRESS_WIDTH UINT8 Address width (in bytes)

Reserved UINT8

SIZE UINT32 Size of device (in bytes)

GET LOCK
This asynchronous command requests that the Host

obtain the flash manager lock.

Command

Table 131.

Size Value Mnemonic Description

16 bits 0x8500 FLASHMGR_GET_LOCK Request to obtain the flash manager lock

Command Parameters
None.

Result Status

Table 132.

Result Status Code Description

ENOERR Command accepted and in operation

EBUSY Previous Get Lock request has not completed

EALREADY Lock has already been obtained.

Command Response Parameters
None.

Notes
 The Host must successfully obtain the flash manager

access lock before it can issue any other flash manager
commands.

 The Host must ensure the access lock is released when
access to the NVM device is no longer required.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
60

LOCK STATUS

Command
This synchronous command retrieves the status of a

previous Get Lock request.

Table 133.

Size Value Mnemonic Description

16 bits 0x8501 FLASHMGR_LOCK_STATUS Get status of a Get Lock request

Command Parameters
None.

Result Status

Table 134.

Result Status Code Description

ENOERR Get Lock command has completed − Host now owns the access lock

EBUSY Previous Get Lock request has not completed

Command Response Parameters
None.

Notes
 The Host can issue further flash manager commands

only if this command returns ENOERR.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
61

RELEASE LOCK
This synchronous command releases the flash manager’s

access lock.

Command

Table 135.

Size Value Mnemonic Description

16 bits 0x8502 FLASHMGR_RELEASE_LOCK Release the access lock

Command Parameters
None.

Result Status

Table 136.

Result Status Code Description

ENOERR Release Lock command has completed

EBUSY Previous Get Lock request has not completed

Command Response Parameters
None.

Notes
 The Host cannot issue further flash manager commands

once the access lock has been released.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
62

CONFIG
This synchronous command configures the flash manager

and the underlying SPI support subsystems.

Command

Table 137.

Size Value Mnemonic Description

16 bits 0x8503 FLASHMGR_CONFIG Configure the flash manager and associated subsystems

Command Parameters

Table 138.

Byte Offset Field Type Value Description

+0 CONFIG FLASHMGR_CONFIG The desired configuration

Result Status

Table 139.

Result Status Code Description

ENOERR Configure command has completed

EINVAL Requested configuration parameter is invalid

EACCES Host does not own the flash manager access lock

Command Response Parameters
None

Notes
 The SPI_SPEED field of the Config parameter is the

desired SPI bus speed in Hertz. The AS0148AT
supports a range of SPI bus speeds - see “SPI Bus
Speeds” on page 111.

 The AS0148AT uses the following default
configuration:
 SPI _SPEED: Minimum supported (see “SPI Bus

Speeds” on page 111)

 SPI_MODE: Mode 0

 SPI_READ: Standard 0x03 command

 The SPI bus speed is dependent upon the current pixel
clock setting. If the pixel clock is changed, the SPI bus
speed will change proportionally to the change in pixel
clock. To avoid a change in SPI bus speed, this
command should be re−issued whenever a pixel clock
change occurs to reconfigure the SPI bus to the desired
speed.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
63

READ
This asynchronous command requests the flash manager

to read data from the NVM device.

Command

Table 140.

Size Value Mnemonic Description

16 bits 0x8504 FLASHMGR_READ Read data from the NVM device

Command Parameters

Table 141.

Byte Offset Field Type Value Description

+0 Address UINT32 Address of data to read in NVM

+4 Length UINT8 Number of bytes to read (limited to PARAMS_POOL_SIZE)

Result Status

Table 142.

Result Status Code Description

ENOERR Command accepted and operation in progress

ENODEV NVM device was not detected

ERANGE Length is out of range

EBUSY Previous operation is still in progress

EACCES Host does not own the flash manager access lock

Command Response Parameters
None

Notes
 The Read command requests the Flash Manager

retrieve data from the NVM device. The time to do this
is indeterminate.

 The Host should use the Flash Status command to
determine if the Read operation has completed.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
64

WRITE
This asynchronous command requests the flash manager

write data to NVM device.

Command

Table 143.

Size Value Mnemonic Description

16 bits 0x8505 FLASHMGR_WRITE Write data to the NVM device

Command Parameters

Table 144.

Byte Offset Field Type Value Description

+0 Address UINT32 Address of data to write in NVM

+4 Length UINT8 Number of bytes to write
(limited to PARAMS_POOL_SIZE − 5)

+5 Data[0] UINT8 First byte of data to write

+n Data[n−5] UINT8 Last byte of data to write

Result Status

Table 145.

Result Status Code Description

ENOERR Command accepted and operation in progress

ENODEV NVM device was not detected

ERANGE Length is out of range

EBUSY Previous operation is still in progress

ENOSYS Requested operation is not supported

EACCES Host does not own the flash manager access lock

Command Response Parameters
None.

Notes
 The Write command requests the Flash Manager write

data to the NVM device. The time to do this is
indeterminate.

 The Host should use the Flash Status command to
determine if the Write operation has completed.

 Where necessary, the Flash Manager will automatically
issue a write−enable command to the NVM device
before requesting the write operation.

 It is the caller’s responsibility to ensure that a write
does not span a page boundary in the device being
written to.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
65

ERASE BLOCK
This asynchronous command requests the flash manager

to erase a block of data in the NVM device.

Command

Table 146.

Size Value Mnemonic Description

16 bits 0x8506 FLASHMGR_ERASE_BLOCK Erase a block of data in the NVM device

Command Parameters

Table 147.

Byte Offset Field Type Value Description

+0 Address UINT32 Address of block of data to erase in NVM

Result Status

Table 148.

Result Status Code Description

ENOERR Command accepted and operation in progress

ENODEV NVM device was not detected

ERANGE Length is out of range

EBUSY Previous operation is still in progress

ENOSYS Requested operation is not supported

EACCES Host does not own the flash manager access lock

Command Response Parameters
None.

Notes
 The Erase Block command requests the Flash Manager

erase a block of data in the NVM device. The time to
do this is indeterminate.

 The size of the block to be erased is device−specific
and driver−specific.

 The Host should use the Flash Status command to
determine if the Erase Block operation has completed.

 Where necessary, the Flash Manager will automatically
issue a write−enable command to the NVM device
before requesting the erase operation.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
66

ERASE DEVICE
This asynchronous command requests the flash manager

to erase the entire NVM device.

Command

Table 149.

Size Value Mnemonic Description

16 bits 0x8507 FLASHMGR_ERASE_DEVICE Erase NVM device

Command Parameters
None.

Result Status

Table 150.

Result Status Code Description

ENOERR Command accepted and operation in progress

ENODEV NVM device was not detected

EBUSY Previous operation is still in progress

ENOSYS Requested operation is not supported

EACCES Host does not own the flash manager access lock

Command Response Parameters
None.

Notes
 The Erase Device command requests the Flash

Manager erase the entire contents of the NVM device.
The time to do this is indeterminate.
 In some circumstances the Erase Device command

will operate synchronously – that is, the command
will not complete until the device has been erased.

This is due to the speed of the SPI bus. Configuring
a slower speed will allow the com− mand to operate
asynchronously.

 The Host should use the Flash Status command to
determine if the Erase Device operation has completed.

 Where necessary, the Flash Manager will automatically
issue a write−enable command to the NVM device
before requesting the erase operation.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
67

QUERY DEVICE
This asynchronous command requests the flash manager

to retrieve the NVM device− and manufacturer−specific
identifiers.

Command

Table 151.

Size Value Mnemonic Description

16 bits 0x8508 FLASHMGR_QUERY_DEVICE Query the NVM device

Command Parameters
None.

Result Status

Table 152.

Result Status Code Description

ENOERR Command accepted and operation in progress

ENODEV NVM device was not detected

EBUSY Previous operation is still in progress

EACCES Host does not own the flash manager access lock

Command Response Parameters
None.

Notes
 The Query Device command requests the Flash

Manager to retrieve device− and manufacturer−specific
information from the NVM device. The time to do this
is indeterminate.

 The contents and encoding of the returned data are
device− and manufacturer− specific (see “Appendix B:
SPI Non−Volatile Memory Device Support” on
page 110).

 The Host should use the Flash Status command to
determine if the Query Device operation has completed.
The Status command also retrieves the response to the
Query Device command

http://www.onsemi.com/

AND9930/D

www.onsemi.com
68

FLASH STATUS
This synchronous command retrieves the status of the

current flash manager operation.

Command

Table 153.

Size Value Mnemonic Description

16 bits 0x8509 FLASHMGR_STATUS Retrieve the status of the current operation

Command Parameters
None.

Result Status

Table 154.

Result Status Code Description

ENOERR Operation has completed successfully

EIO Data could not be transferred − operation aborted

EBUSY Operation is still in progress

EACCES Host does not own the flash manager access lock

Command Response Parameters
If previous command was Read or Query Device, AND

Result Status is ENOERR:

Table 155.

Byte Offset Field Type Value Description

+0 Data[0] UINT8 First byte of data

+n Data[n] UINT8 Last byte of data

Notes
A result status of ENOERR indicates that the requested

operation has completed. In the case of the Read and Query

Device command, the Host can now retrieve the requested
data from the parameters pool.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
69

CONFIG DEVICE
This synchronous command configures the firmware to

control the attached NVM device.

Command

Table 156.

Size Value Mnemonic Description

16−bits 0x850A FLASHMGR_CONFIG_DEVICE Configure attached NVM device

Command Parameters

Table 157.

Byte Offset Field Type Value Description

+0 Config DEVICE_CONFIG The desired device configuration

Result Status

Table 158.

Result Status Code Description

ENOERR Configure Device command has completed

EINVAL Requested configuration parameter is invalid

EACCES Host does not own the Flash Manager access lock

Command Response Parameters
None

Notes
 The AS0148AT firmware cannot erase or write to

devices until configured using the Config Device
command.

 See “Appendix B: SPI Non−Volatile Memory Device
Support” on page 110 for details of the supported NVM
devices.

 This command can be encoded within an INIT_TABLE
record processed during System Configuration; in this
use−case it does not require the Flash Manager access
lock to have been obtained using the Get Lock
command.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
70

VALIDATE RECORDS
This asynchronous command requests that the firmware

search through and validate the correctness of all (or a subset
of) the records contained in the attached NVM device.

The command will terminate as soon as an invalid record
is found, or when all requested records are parsed and found
to be valid.

Command

Table 159.

Size Value Mnemonic Description

16 bits 0x850D FLASHMGR_VALIDATE_RECORDS Validates NVM records by iterating through them and comparing their
checksums against the computed value

Command Parameters

Table 160.

Byte Offset Field Type Value Description

+0 Validate Meta Data FLAG FALSE
TRUE

When FALSE, validates all records referenced by the TOC and its fields.
When TRUE, only validates the metadata records. This will reduce the exe-
cution time of the command. Note: Data records are validated on− demand
when loaded.

Result Status

Table 161.

Result Status Code Description

ENOERR Command accepted and operation in progress

ENODEV NVM device was not detected

ENOMEM Buffer for record parsing could not be acquired.

EBUSY Previous operation is still in−progress

EACCES Could not obtain the Flash Manager access lock

Command Response Parameters
None

Notes
 This command automatically obtains the Flash

Manager access lock, and automatically releases it
when the command completes (successfully or not).
Therefore the Host should not obtain the lock prior to
invoking this command. The command will be rejected
with EACCES if the lock could not be obtained.

 The command will return ENODEV if an NVM device
was not detected during discovery, or if no valid TOC
record was detected in the attached device.

 This command can be encoded within an INIT_TABLE
record processed during System Configuration to
validate the contents of the NVM device before further
processing.

 The command attempts to obtain free RAM from the
Patch Loader component, to use for temporary storage

of the records retrieved from the NVM device. If
insufficient free RAM exists (due to patches having
been loaded), the command will fail with ENOMEM.
The intention is that this command is used prior to
loading patches to ensure the NVM device contents are
valid; sufficient RAM will be present in this scenario.
The free RAM is released back to the Patch Loader
when the command completes (successfully or not).

 The Validate Meta Data parameter indicates whether
the command should validate only the metadata records
present in the NVM device, or all records present (those
referenced by the TOC). The NVM records are classed
as metadata or data records (refer to Table 162):
 Metadata records are those which detail where the

firmware can locate data records.
 Data records are those which contain data to be

processed by the device firmware or underlying
hardware.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
71

Table 162. METADATA AND DATA RECORDS

metadata Records Data Records

TOC REGISTER_ARRAY_V1

INIT_TABLE REGISTER_INIT_V1

PATCH_TOC REGISTER_SET_V1

OVERLAY_BITMAP_TOC REGISTER_MASKED_SET_V1

OVERLAY_STRING_TOC SENSOR_REGISTER_ARRAY_V1

OVERLAY_COLORLUT_TOC SENSOR_REGISTER_SET_V1

OVERLAY_USERCHAR_TOC SENSOR_REGISTER_MASKED_SET_V1

COMMAND_SEQ_TOC VARIABLE_ARRAY_V2

COMMAND_SEQ_V1 VARIABLE_INIT_V2

STE_CONFIG_TOC VARIABLE_SET_V2

VARIABLE_MASKED_SET_V2

PATCH_V1

OVERLAY_BITMAP_V3

OVERLAY_STRING_V2

OVERLAY_COLORLUT

OVERLAY_USERCHAR

COMMAND_V1

STE_CONFIG_V2

 This command does not support the
NULL_RECORD or EXTENDED_NULL_RE−
CORD records. If such a record is located, the
command will terminate. This is because the
checksum of these records is invalid, and therefore
cannot be used to validate their correctness.

 This command will terminate immediately if an
invalid record is detected. Use the Validation Status
command to determine the status of the command.

 This command cannot be used to validate the
contents of a virtual Flash image. A virtual Flash
image is stored in OTPM records which are check
summed when read by the firmware during the
OTPM−Config state of the System Configuration
phase.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
72

VALIDATION STATUS
This synchronous command retrieves the status and

results of the previous Validate Records request.

Command

Table 163.

Size Value Mnemonic Description

16 bits 0x850E FLASHMGR_VALIDATION_STATUS Retrieves the status of the previous Validate Records request.

Command Parameters
None

Result Status

Table 164.

Result Status Code Description

ENOERR Validate Records command completed

EBUSY Previous Validate Records request has not completed

Command Response Parameters

Table 165.

Byte Off-
set Field Type Value Description

+0 Error Status UINT8 ENOERR − EALREADY The Result Status of the last error to occur when vali-
dating an NVM record

+1 Record Type UINT8 0x00 − 0xFF If Error Status is not ENOERR, indicates the type of the
record that failed validation

+2 Record Length UINT16 0x0000 − 0xFFFF If Error Status is not ENOERR, indicates the payload
length of the record that failed validation

+4 Record Checksum UINT16 0x0000 − 0xFFFF If Error Status is not ENOERR, indicates the checksum
indicated in the header of the record that failed valida-
tion

+6 Computed Checksum UINT16 0x0000 − 0xFFFF If Error Status is not ENOERR, indicates the checksum
value that was computed by the command while the
record was being validated.

+8 Failure Address UINT32 0x00000000 − 0xFFFFFFFF If Error Status is not ENOERR, indicates the start ad-
dress in the NVM image of the record that failed valida-
tion.

+12 Records Checked UINT16 0 − 0xFFFF The total amount of records checked during the last
Validate Records command. If Error Status is not ENO-
ERR, this includes the record which failed validation

Notes
The host can issue another Validate Records request only

if this command does not return EBUSY.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
73

ISSUE DEVICE COMMAND
This asynchronous command requests the Flash Manager

to issue an 8−bit device command to an SPI device.

Command

Table 166.

Size Value Mnemonic Description

16 bits 0x850F FLASHMGR_ISSUE_DEVICE_CMD Issue an 8−bit command to an SPI device, with optional transmit pay-
load

Command Parameters
None

Result Status

Table 167.

Byte Offset Field Type Value Description

+0 Command UINT8 SPI device command code

+1 Tx Length UINT8 0 – 253 Number of bytes to write to device following Command byte

+2 Rx Length UINT8 0 – 256 Number of bytes to read from device following Command byte and the trans-
mit bytes (if Tx Length is non−zero)

+3 Tx Data[0] UINT8 First byte to write to device following Command byte Ignored if Tx Length = 0

+n Data[n−3] UINT8 Last byte of data to write Ignored if Tx Length = 0

Command Response Parameters

Table 168.

Result Status Code Description

ENOERR Command accepted and operation in progress

ENODEV NVM device was not detected

EBADF NVM device is not an SPI device

ERANGE Tx Length or Rx Length is out−of−range

EBUSY Previous operation is still in−progress

ENOSYS Requested operation is not supported

EACCES Host does not own the Flash Manager access lock

Notes
 The Issue Device Command command requests the

Flash Manager write data to and (optionally) read data
from the attached SPI device. The time to do this is
indeterminate.

 The Host should use the Get Device Command
Response command to determine if the Issue Device
Command operation has completed.

 The Command parameter specifies the SPI device
command code to be issued. This command code is not
interpreted by the Flash Manager.

Examples of Usage
 The Issue Device Command command is only

supported by the read−write SPI device drivers. The
Host should issue the Config Device command to select
the appropriate driver.

 The Issue Device Command and Get Device Command
Response host commands can be used to read and write
the status register of the attached SPI device. Simplified
examples of Read Status Register and Write Status
Register are provided below:

http://www.onsemi.com/

AND9930/D

www.onsemi.com
74

#define FLASHMGR_ISSUE_DEVICE_COMMAND 0x850F #define FLASHMGR_GET_DEVICE_CMD_RESPONSE

0x8510

// SPI device commands

#define SPI_READ_STATUS_REG 0x05

#define SPI_WRITE_ENABLE 0x06

#define SPI_WRITE_STATUS_REG 0x01

//--

// issues the FLASHMGR_ISSUE_DEVICE_COMMAND command

// - assumes Host has Flash lock

// - txData is a pointer to an array of bytes (length txLen)

//--

int flashmgrIssueDeviceCommand(uint8 command, uint8 txLen, uint8 rxLen, uint8* txData)

{

int i;

// set the command and TX length writeVar16(CMD_HANDLER_PARAMS_POOL_0, command << 8 |

txLen);

if (0 != txLen) {

// set the RX length and first byte of TX data writeVar16(CMD_HANDLER_PARAMS_POOL_1, rxLen

<< 8 | txData[0]);

// write the remaining TX data (ignoring txLen, data will be ignored by firmware anyway)

for (i=1; i<txLen; i+=2) {

writeVar16(CMD_HANDLER_PARAMS_POOL_0 + i, txData[i] | txData[i+1]);

}

} else {

// set the RX Length writeVar16(CMD_HANDLER_PARAMS_POOL_1, rxLen << 8);

}

return issueCommand(FLASHMGR_ISSUE_DEVICE_COMMAND);

}

//--

// issues the FLASHMGR_GET_DEVICE_CMD_RESPONSE command

// - assumes Host has Flash lock

// - rxData is an optional pointer to an array of bytes (length rxLen)

//--

int flashmgrGetDeviceCommandResponse(uint8 rxLen, uint8* rxData)

{

uint16 local_params[8];

int res = issueCommand(FLASHMGR_GET_DEVICE_CMD_RESPONSE); if ((ENOERR == res) && rxLen) {

// retrieve all data from params pool for (i=0; i<rxLen/2; i++) {

local_params[i] = readVar16(CMD_HANDLER_PARAMS_POOL_0 + (i*2));

}

// copy requested data to caller's buffer memcpy(rxData, rxLen, (uint8*)local_params);

}

return res;

}

//--

// read from the status register of the attached SPI device

// - assumes Host has Flash lock

//--

int readSPIStatusRegister(uint8 *status)

{

// Request 1 byte read from the SPI device's status register

int res = flashmgrIssueDeviceCommand(SPI_READ_STATUS_REG, 0, 1, NULL); if (ENOERR == res) {

// wait for device command to complete while (true) {

res = flashmgrGetDeviceCommandResponse(1, status); if (EBUSY != res) break; // we're done

}

}

return res;

}

//--

// write to the status register of the attached SPI device

// - assumes Host has Flash lock

//--

http://www.onsemi.com/

AND9930/D

www.onsemi.com
75

int writeSPIStatusRegister(uint8 status)

{

// Must first write-enable the register

int res = flashmgrIssueDeviceCommand(SPI_WRITE_ENABLE, 0, 0, NULL); if (ENOERR == res) {

// wait for device command to complete while (true) {

res = flashmgrGetDeviceCommandResponse(0, NULL) ; if (EBUSY != res) break; // we're done

}

if (ENOERR == res) {

// now write 1 byte to the SPI device's status register

res = flashmgrIssueDeviceCommand(SPI_WRITE_STATUS, 1, 0, &status); if (ENOERR == res) {

// wait for command to complete while (true) {

res = flashmgrGetDeviceCommandResponse(0, NULL);

if (EBUSY != res) break; // we're done

}

}

}

}

return res;

}

http://www.onsemi.com/

AND9930/D

www.onsemi.com
76

GET DEVICE COMMAND RESPONSE
This synchronous command retrieves the status and

(optional) response data of the last Issue Device Command
request.

Command

Table 169.

Size Value Mnemonic Description

16 bits 0x8510 FLASHMGR_GET_DEVICE_CMD_RESP Retrieve the response to an Issue Device Command request

Command Parameters
None

Result Status

Table 170.

Result Status Code Description

ENOERR Operation has completed successfully

EIO Data could not be transferred − operation aborted

EBUSY Operation is still in progress

EACCES Host does not own the Flash Manager access lock

Command Response Parameters
If the Rx Length parameter of the Issue Device Command

request was non−zero, AND Result Status is ENOERR:

Table 171.

Byte Offset Field Type Value Description

+0 Data[0] UINT8 First byte of Rx data

+n Data[n] UINT8 Last byte of Rx data

Notes
A result status of ENOERR indicates that the requested

operation has completed. If the Rx Length parameter of the
Issue Device Command request was non−zero, the Host can
now retrieve the requested data from the Parameters Pool.

Examples of Usage
See“Issue Device Command” example.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
77

SEQUENCER INTERFACE

OVERVIEW
The Sequencer component is responsible for the

configuration and management of the AS0148AT sensor

and color−pipe, and its associated automatic image
processing functions.

Summary
Table 172 summarizes the Host commands relating to the

Sequencer subsystem of the AS0148AT.

Table 172. SEQUENCER HOST COMMANDS

Sequencer Host Command Value Type Description

Refresh 0x8606 Asynchronous Refresh the automatic image processing algorithm configuration

Refresh Status 0x8607 Synchronous Retrieve the status of the last Refresh operation

Refresh
This asynchronous command instructs the Sequencer to

refresh the configuration and state of the automatic image
processing algorithms.

Command

Table 173.

Size Value Mnemonic Description

16 bits 0x8606 SEQ_REFRESH Refresh the automatic image processing algorithm configuration

Command Parameters
None

Result Status

Table 174.

Result Status Code Description

ENOERR Command completed successfully

Command Response Parameters
None

Notes
 The Sequencer defers the Refresh operation until the

next sensor end−of−frame occurs. The time for this to

occur is dependent upon the system state, and the
sensor configuration.

 The Host should use the Refresh Status command to
determine when the Refresh oper− ation has completed.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
78

REFRESH STATUS

Command
This synchronous command retrieves the status of the last

Refresh command.

Table 175.

Size Value Mnemonic Description

16 bits 0x8607 SEQ_REFRESH_STATUS Retrieve the status of the last Refresh command

Command Parameters
None

Result Status

Table 176.

Result Status Code Description

ENOERR Refresh command completed successfully

EBUSY Refresh command is still in−progress

Command Response Parameters
None

Notes
None

http://www.onsemi.com/

AND9930/D

www.onsemi.com
79

PATCH LOADER INTERFACE

OVERVIEW
The Patch Loader is responsible for loading and applying

firmware patches, and for managing the remaining free
Patch RAM.

Summary
Table 177 summarizes the Host commands relating to the

patch loader subsystem of the AS0148AT.

Table 177. PATCH LOADER HOST COMMANDS

Patch Loader Host
Command Value Type Description

Load Patch 0x8700 Asynchronous Load a patch from NVM and automatically apply

Status 0x8701 Synchronous Get status of an active Load Patch or Apply Patch request

Apply Patchf 0x8702 Asynchronous Apply a patch (already located in Patch RAM)

Reserve RAM 0x8706 Synchronous Reserve RAM to contain a patch

Load Patch
This asynchronous command requests that the firmware

loads and applies a firmware patch stored in NVM.

Command

Table 178.

Size Value Mnemonic Description

16 bits 0x8700 PATCHLDR_LOAD_PATCH Load and apply a patch

Command Parameters

Table 179.

Byte Offset Field Type Value Description

+0 Patch index UINT16 Identifies the patch to load

Result Status

Table 180.

Result Status Code Description

ENOERR Command accepted and in operation

ENODEV NVM device was not found − buffer not loaded

ERANGE Attempting to load patch into already−used area of Patch RAM

EBUSY Previous Load Patch or Apply Patch request has not completed

Command Response Parameters
None.

Notes
 The Patch ID is determined by the PATCH_TOC

record—it is the index of the patch record in the
PATCH_TOC.

 If a previous Load Patch command is still active, the
request will be rejected with EBUSY.

STATUS
This synchronous command retrieves the status of a

previous Load Patch or Apply Patch request.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
80

Table 181.

Size Value Mnemonic Description

16 bits 0x8701 PATCHLDR_STATUS Get status of a Load Patch or Apply Patch request

Command Parameters
None.

Result Status

Table 182.

Result Status Code Description

ENOERR Load Patch or Apply Patch command has completed successfully

ENOENT Specified patch could not be located in NVM − patch not loaded

EIO Patch could not be transferred; patch not loaded

EBUSY Previous Load Patch or Apply Patch request has not completed

Command Response Parameters
None.

Notes
The Host can issue another Load Patch or Apply Patch

request if this command does not return EBUSY.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
81

APPLY PATCH
This asynchronous command requests the Patch Loader

applies a patch stored in Patch RAM.

Command

Table 183.

Size Value Mnemonic Description

16 bits 0x8702 PATCHLDR_APPLY_PATCH Apply a patch stored in Patch RAM

Command Parameters
None.

Result Status

Table 184.

Byte Offset Field Type Value Description

+0 Loader Address UINT16 Address of the Patch’s loader function in Patch RAM

+2 Patch ID UINT16 Unique patch identifier

+4 Firmware ID UINT32 Firmware ROM version identifier

Table 185.

Result Status Code Description

ENOERR Command accepted and operation in progress

EINVAL Address is out of range

EBADF Firmware ID field is invalid

EBUSY Previous Load Patch or Apply Patch request has not completed

Command Response Parameters
None.

Notes
 The Firmware ID field is used by the Patch Loader to

verify that the patch is appropriate for the ROM
firmware. Any attempt to load a patch with an incorrect
encoded firmware version will be rejected with
EBADF.

 The Patch ID field is used to provide a unique identifier
for the patch. This is reported by the Patch Loader via
the PATCHLDR_PATCH_ID_0 through PATCHLDR_−
PATCH_ID_7 variables. No enforcement of unique
identifiers is provided by the firm− ware.

 The patch data loaded into Patch RAM is executable
code.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
82

RESERVE RAM
This synchronous command requests the Patch Loader

reserve a region of Patch RAM to contain a patch.

Command

Table 186.

Size Value Mnemonic Description

16 bits 0x8706 PATCHLDR_RESERVE_RAM Request RAM is reserved to contain a patch

Command Parameters

Table 187.

Byte Offset Field Type Value Description

+0 Start Address UINT16 Start address of the patch

+2 Size Bytes UINT16 Size of the patch (in bytes)

Result Status

Table 188.

Result Status Code Description

ENOERR Command completed successfully

EBUSY Insufficient free RAM exists; cannot load patch

Command Response Parameters
None.

Notes
 The Host must successfully reserve the RAM to contain

a patch before downloading the patch to Patch RAM.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
83

MISCELLANEOUS

OVERVIEW
The firmware supports a number of miscellaneous

commands for processing data stored in NVM, and for
synchronization.

Summary
Table 189 summarizes the miscellaneous Host

commands.

Table 189. MISCELLANEOUS HOST COMMANDS

Miscellaneous Host Command Value Type Description

Invoke Command Sequence 0x8900 Synchronous Invokes a sequence of commands stored in NVM

Configure Command Sequence Processor 0x8901 Synchronous Configures the Command Sequencer processor

Wait for Event 0x8902 Synchronous Waits for a system event to be signaled

MISCELLANEOUS COMMAND PARAMETERS
Table 190 lists the extended parameter types specific to

the miscellaneous commands.

Table 190. MISCELLANEOUS COMMAND PARAMETER TYPES

Extended Type Size Field Base Type Description

MISC_EVENT_ID 8 bits – UINT8 Broadcast event identifiers: 0: Sensor start−of−frame
1: Sensor end−of−frame
2: Overlay start−of−frame
3: Overlay end−of−frame 4:High Temperature 5:Low Tempera-
ture 6:Normal Temperature

http://www.onsemi.com/

AND9930/D

www.onsemi.com
84

INVOKE COMMAND SEQUENCE
This synchronous command requests the firmware to

invoke (process) a sequence of commands stored in NVM.

Command

Table 191.

Size Value Mnemonic Description

16 bits 0x8900 MISC_INVOKE_COMMAND_SEQ Process a command sequence stored in NVM

Command Parameters

Table 192.

Byte Offset Field Type Value Description

+0 Sequence ID UINT16 Identifies the COMMAND_SEQ_Vx record to invoke

Result Status

Table 193.

Result Status Code Description

ENOERR Command completed successfully

ENODEV NVM device was not found − sequence not invoked

ENOENT Sequence ID not present – sequence not loaded

Command Response Parameters
None.

Notes
 The Invoke Command Sequence command allows the

Host to invoke a Command Sequence (sequence of
Host commands) stored within a
COMMAND_SEQ_Vx record in NVM.

 The Sequence ID is determined by the
COMMAND_SEQ_TOC record - it is the index of the
command sequence in the COMMAND_SEQ_TOC.

 The command is synchronous; the Host cannot issue
any other commands while the Command Sequence is
active. The time to process the Command Sequence is
indeterminate.

 Command Sequences can recursively invoke other
Command Sequences (by encoding an IInvoke
Command Sequence command within a
COMMAND_V1 record). The maximum recursion
depth is determined by
CMDHANDLER_MAX_CMDSEQS.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
85

CONFIGURE COMMAND SEQUENCE PROCESSOR
This synchronous command allows the Host to configure

the Command Sequence Processor.

Command

Table 194.

Size Value Mnemonic Description

16 bits 0x8901 MISC_CONFIG_CMDSEQ_PROC Configures the Command Sequence Processor

Command Parameters

Table 195.

Byte Offset Field Type Value Description

+0 AbortOnError FLAG FALSE TRUE Continue command sequence processing Abort command se-
quence processing

Result Status

Table 196.

Result Status Code Description

ENOERR Command successful

Command Response Parameters
None.

Notes
 The Command Sequence Processor defaults to aborting

processing of command sequences should any
command (within the sequence) fail.

 The Host can use this command to configure how the
Command Sequencer Processor handles command
processing errors.

 If AbortOnError is FALSE, the Command Sequence
Processor will attempt to process all commands in the
sequence, regardless of each individual command’s
result status.

 The command sequence will be aborted if the
Command Sequence Processor fails to locate or
validate any record referenced by the command
sequence, regardless of the abort mode.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
86

WAIT FOR EVENT
This synchronous command allows the Host to determine

when a broadcast event occurs.

Command

Table 197.

Size Value Mnemonic Description

16 bits 0x8902 MISC_WAIT_FOR_EVENT Wait for a broadcast event to be signaled

Command Parameters

Table 198.

Byte Offset Field Type Value Description

+0 EventID MISC_EVENT_ID Identifies the event to wait for

Result Status

Table 199.

Result Status Code Description

ENOERR Event has been signaled

EINVAL Invalid event ID

ENOSYS Command not supported

Command Response Parameters
None.

Notes
 The Wait for Event command blocks the Command

Handler task, waiting for the specified broadcast event
to be signaled.

 Broadcast events are signaled periodically to indicate
the occurrence of a significant system event. The
Sequencer signals the sensor end−of−frame event, and
the Overlay Manager signals the overlay start− and
end−of−frame. The Temperature Monitor, when
enabled, signals Temperature High, Low and Normal
events.

 The Wait for Event command is synchronous; the Host
cannot issue any other commands until the event is
signaled. The time to process the command is therefore
indeterminate.

 If the component that signals the broadcast event is not
active, this command will never complete.

 The Wait for Event command is primarily intended for
synchronizing the operations of Command Sequences.
For example, a Command Sequence to display an
animated bitmap could wait for Overlay
Start−Of−Frame events (by encoding the Wait For
Event command within a COMMAND_V1 record)
between Overlay Load Buffer commands.

 The Wait for Event command also permits the Host to
synchronize to the sensor frame timing. The Host issues
the Wait For Event command, then continuously polls
the Command Register. The command will complete
when the sensor start− or end−of− frame event is
signaled by the Sequencer.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
87

CALIBRATION STATISTICS
The Calibration Statistics engine is connected to the

output of the STE module. In order for it to acquire data the
sensor must be streaming, and the system configured for
STE− sourced output.

The Calibration Statistics engine has been designed to
determine the center of a white cross on a black background.
To facilitate this, the module contains accumulators that sum
the luma values of every pixel in their bin.

The accumulators can be arranged to sum rows:

full frame

Accumulators (xwards=0)

Bin 0
Bin 1
Bin 2
Bin 3
Bin 4
Bin 5
Bin 6
Bin 7

Figure 8.

The accumulators can also be arranged to sum columns:

full frame

Accumulators (xwards=1)

B
in

0

B
in

1

B
in

2

B
in

3

B
in

4

B
in

5

B
in

6

B
in

7

Figure 9.

The diagrams above show the Region Of Interest set to full
frame. Using this technique it is possible to get a rough
position for the white cross by reading the accumulator
results. The Region Of Interest can then be reduced (zoomed
in) around this rough position and a better guess achieved.
By using this successive approximation technique a number
of times a very accurate position can be calculated.

This process is used to automatically find the center of a
test target image using the Calib Stats Control command. A
single image type is supported: the white cross on dark
background.

Summary
Table 200 on page 87 summarizes the host commands that

support calibration statistics.

Table 200. CALIBRATION STATISTICS HOST COMMANDS

Calibration Statistics Host
Command Value Type Description

Calib Stats Control 0x8B00 Asynchronous Start statistics gathering

Calib Stats Read 0x8B01 Synchronous Read the results back

Calibration Statistics Command Parameters

Extended Types
Table 201 lists the extended parameter types specific to

the Calibration Statistics commands.

Table 201. CALIBRATION STATISTICS COMMAND PARAMETER TYPES

Extended Type Size Field Base Type Description

CALIB_OP_TYPE 8 bits − UINT8 Calibration statistics operation:
0: Find center of cross−hair target
1: Records the luminance in the specified window

http://www.onsemi.com/

AND9930/D

www.onsemi.com
88

CALIBRATION STATISTICS CONTROL
This asynchronous command configures then enables the

Calibration Statistics subsystem to run. The operation
performed depends on the parameters passed.

Command

Table 202.

Size Value Mnemonic Description

16 bits 0x8B00 CALIB_STATS_CONTROL Control the calibration stats subsystem

Command Parameters

Table 203.

Byte Offset Field Type Value Description

+0 Capture type CALIB_OP_TYPE Specifies the operation to perform.

+1 Min_bin_size UINT8 1 − ROI/8 Minimum bin size (in pixels) in each dimension (when fully
zoomed in). Maximum depends on the smaller of the ROI rows
or columns divided by 8.

+2 X_start UINT16 X start of the region of interest in pixels.

+4 X_end UINT16 X end of the region of interest in pixels.

+6 Y_start UINT16 Y start of the region of interest in pixels.

+8 Y_end UINT16 Y end of the region of interest in pixels.

+10 Edge threshold UINT16 1 − 100 Threshold for chart edge detection between adjacent bins, in
percent.

+12 Max angle UINT16 1 − 7 Maximum rotation angle to tolerate in search, in degrees

Result Status

Table 204.

Result Status Code Description

ENOERR Command completed successfully

EBUSY Previous CALIB_STATS_CONTROL command is still in progress, or the system is not in the
SYS_STATE_STREAMING state.

Capture type = 0
If the capture type is “find center of crosshair” the

calibration statistics firmware will try to determine the
center of a cross in an image. The search window is
determined by parameters X_start, X_end, Y_start and
Y_end.

The routine starts with this window and gradually zooms
the calibration stats window around the brightest bin
captured. After a number of iterations, the zoom window
reaches maximum resolution Min_bin_size (set by
parameters) and the center is recorded.

Where the target cross is on the edge of the search window,
it is possible that the returned center will be outside the
search window. This is a strong indication that the
calibration setup (including the search window and physical

position of the camera and cross) are sub−optimal and
should be adjusted until the returned center is within the
search window.

Capture type = 1
If the capture type is ”record luminance” the calibration

statistics firmware will gather data for the specified window,
as set by the by parameters X_start, X_end, Y_start and
Y_end. The Min_bin_size parameter will be ignored. This
window is called the Region Of Interest (ROI) and is divided
into 8 bins of equal size.
 The Y bins divide the ROI into 8 rows of equal size.

 The X bins divide the ROI into 8 columns of equal size.

The Y bins are shown below:

http://www.onsemi.com/

AND9930/D

www.onsemi.com
89

X_start,

Y_start

R egion Of Interest

Accum ulators (xw ards=0)

X_end,

Y_end

Bin 0

Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

Figure 10.

The luma value of each pixel in a Y bin is summed with
the others to produce a 24−bit result.

The X bins are shown below:

X_start,

Y_start

R egion Of Interest

Accum ulators (xw ards=1)

X_end,

Y_end

B
in

 0

B
in

 1

B
in

 2

B
in

 3

B
in

 4

B
in

 5

B
in

 6

B
in

 7

Figure 11.

The luma value of each pixel in an X bin is summed with
the others to produce a 24−bit result.

For example, if the ROI is X_start = 0, X_end = 719,
Y_start = 0 and Y_end = 479: Each Y bin will contain 43200
pixels:
 Bin 0 (0,0) to (719,59)

 Bin 1 (0,60) to (719,119)

 Bin 2 (0,120) to (719,179)

 Bin 3 (0,180) to (719,239)

 Bin 4 (0,240) to (719,299)

 Bin 5 (0,300) to (719,359)

 Bin 6 (0,360) to (719,419)

 Bin 7 (0,420) to (719,479)

Each X bin will contain 43200 pixels. The X bins will have
the following co−ordinates:
 Bin 0 (0,0) to (89,479)

 Bin 1 (90,0) to (179,479)

 Bin 2 (180,0) to (269,479)

 Bin 3 (270,0) to (359,479)

 Bin 4 (360,0) to (449,479)

 Bin 5 (450,0) to (539,479)

 Bin 6 (540,0) to (629,479)

 Bin 7 (630,0) to (719,479)

The summed results are stored to be read by the
CALIB_STATS_READ command.

Notes
Before this command is issued the system should be in the

SYS_STATE_STREAMING state.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
90

CALIBRATION STATISTICS READ
This synchronous command retrieves the results of a

previously−issued Calibration Statistics Control command.

Command

Table 205.

Size Value Mnemonic Description

16 bits 0x8B01 CALIB_STATS_READ Retrieve results

Command Parameters

Table 206.

Byte Offset Field Type Value Description

+0 Capture type CALIB_OP_TYPE Get the results from the previous Calibration Statistics Control

+1 Bin number UINT8 0 to 7 Number of accumulator bin to be read. Only required when reading
the results of Capture type = 1

+2 Swards UINT8 1 = X
0 = Y

Rows (Y) or Columns (X). Only required when reading the results
of Capture type = 1. A value of 1 selects the column result, other-
wise the row results are retrieved.

Result Status

Table 207.

Result Status
Code Description

ENOERR Command completed successfully

ENOENT There is no result to read because the requested capture data has not been run or is no longer valid.

ERANGE The bin number parameter is out of range.

EBUSY CALIB_STATS_CONTROL is still running or the system is not in the SYS_STATE_STREAMING state.

Command Response Parameters
The response depends upon the Capture type, as indicated

in Tables 208 and 209:

Table 208. WHEN CAPTURE TYPE IS SET TO 0

Byte Offset Field Type Value Description

+0 X_center UINT16 Pixels The center of the cross (in pixels)

+2 Y_center UINT16 Pixels The center of the cross (in pixels)

Table 209. WHEN CAPTURE TYPE IS SET TO 1

Byte Offset Field Type Value Description

+0 Sum UINT32 Luma This is the sum of the luma values for each pixel in the indexed bin.

Notes
None.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
91

EVENT MONITOR

SUMMARY
The Event Monitor allows command sequences to be

associated with a predefined set of system events. The
associations are managed using the Host commands shown
below and are similar in format to the association commands
found in the GPI Monitor component. If an association has
been made and enabled a command sequence will be
executed when the Event Monitor receives the
corresponding system event.

The Event Monitor executes all associations linked to a
particular system event, this is done in association order
(starting from zero). The Event Monitor also includes an
event waiting queue, system events which are received
while an event is being handled are placed in the queue to be
processed once the current event processing has completed.
Queued events are processed in order of arrival; once the
waiting queue is full any other events are ignored.

OVERVIEW
Table 210 summarizes the Event Monitor Host

commands.

Table 210. EVENT MONITOR HOST COMMANDS

Event Monitor Host Command Value Type Description

Event Monitor Set Association 0x8C00 Synchronous Associate a system event with a Command Sequence stored
in NVM

Event Monitor Get Association 0x8C01 Synchronous Retrieve an event association

Event Monitor Command Parameters

Extended Types
Table 211 lists the extended parameter types specific to

the Event Monitor commands.

Table 211. EVENT MONITOR COMMAND PARAMETER TYPES

Extended Type Size Field Base Type Description

EVENT_MON_EVENT_ID 8 bits − UINT8 Broadcast event identifiers: 0: Sensor start−of−frame
1: Sensor end−of−frame
2: Overlay start−of−frame
3: Overlay end−of−frame
4: High Temperature
5: Low Temperature
6: Normal Temperature

EVENT MONITOR SET ASSOCIATION
This synchronous command instructs the firmware to

enable or disable an event association with a Command
Sequence stored in NVM.

Command

Table 212.

Size Value Mnemonic Description

16 bits 0x8C00 Event Monitor Set Association Associate a system event with a Command Sequence stored in NVM

http://www.onsemi.com/

AND9930/D

www.onsemi.com
92

Command Parameters

Table 213.

Byte
Offset Field Type Value Description

+0 Association ID UINT8 0 .. m−1 Association to modify (where m is EVENT_MONITOR_MAX_AS-
SOCIATIONS)

+1 Enable FLAG TRUE to enable the association, FALSE to disable

+2 Sequence ID UINT8 Identifies the Command Sequence to load and process

+3 Event ID EVENT_MON_EVENT_ID Identifies the System Event that defines this association

Result Status

Table 214.

Result Status Code Description

ENOERR Command completed successfully

EINVAL Invalid association ID

ENOENT No association exists (if Enable is FALSE)

EBUSY A recently disabled association is still executing and cannot be modified yet. Try again, or try a different
association ID.

EALREADY Association is already in use.

ERANGE Invalid event

Command Response Parameters
None

Notes
 The firmware will support

EVENT_MONITOR_MAX_ASSOCIATIONS
associations between a system event and a Command
Sequence.

 The Sequence ID command parameter is not validated
by the firmware.

 If a system event occurs which has multiple active
command associations, the firm− ware will process

these associations in sequential order, beginning from
association 0.

 This command is synchronous, in that the association
will be enabled or disabled before the command
completes. Note however that the Event Monitor task
runs asynchronously to the command execution. Due to
scheduling priorities, an association may not become
active (or inactive) immediately, but will do so within
one frame time.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
93

EVENT MONITOR GET ASSOCIATION
This synchronous command returns parameters for the

defined association.

Command

Table 215.

Size Value Mnemonic Description

16 bits 0x8C01 Event Monitor Get Association Get event association parameters

Command Parameters

Table 216.

Byte Offset Field Type Value Description

+0 Association ID UINT8 0 .. m−1 Association to be interrogated (where m is EVENT_MONITOR_MAX_AS-
SOCIATIONS

Result Status

Table 217.

Result Status Code Description

ENOERR Command completed successfully

EINVAL Invalid association ID

Command Response Parameters

Table 218.

Byte Offset Field Type Value Description

+0 Association ID UINT8 0 .. m−1 Association to be interrogated (where m is EVENT_MONI-
TOR_MAX_ASSOCIATIONS)

+1 Enabled FLAG TRUE if association is enabled, FALSE if disabled

+2 Sequence ID UINT8 Identifies the Command Sequence to load and process

+3 Event ID EVENT_MON_EVENT_ID Identifies the System Event that defines this association

Notes
None

http://www.onsemi.com/

AND9930/D

www.onsemi.com
94

CCI MANAGER

OVERVIEW

Summary
The CCI (camera control interface) Manager exports a

Host interface to allow access to the CCI master bus of the
AS0148AT.

The CCI master interface is used by the Sensor Manager
component of the AS0148AT firmware to control the
attached sensor; therefore, access to the CCI bus must be
strictly controlled. The Host must obtain an exclusive lock
from the CCI Manager before it can gain access to the CCI
bus.

When the Host owns the CCI bus lock, the Sensor
Manager cannot control the operation of the sensor. This will
in turn stall the automatic image processing algorithms.
When the Host releases the lock the automatic algorithms
will resume.

It is highly recommended that the host only hold the CCI
bus lock for the minimum necessary period.

The CCI master interface is provided primarily for sensor
configuration at start−up. Its use is discouraged when the
system is streaming, due to its affect on the automatic
algorithms as described above. During the streaming state,
the Sensor Manager will acquire and release the CCI bus
lock each frame, in order to update the sensor state. The time
that the Sensor Manager holds the lock is indeterminate, and
depends upon the changes requested by the automatic
algorithms.

If the host needs to read or write to sensor registers while
the device is streaming, it should first request the CCI lock
using the Get Lock command, then continuously poll the
lock status using the Lock Status command. When Lock
Status returns ENOERR, then the host should read or write
sensor registers as required, and then immediately release
the lock with Release Lock. This minimizes the time that the
lock will be unavailable to the Sensor Manager.

Table 219 provides a summary of the CCI Manager Host
commands. The following subsections detail each
command.

Table 219. CCI MANAGER HOST COMMANDS

CCI Manager Host Com-
mand Command Type Description

Get Lock 0x8D00 Asynchronous Request the CCI Manager access lock

Lock Status 0x8D01 Synchronous Retrieve the status of the access lock request

Release Lock 0x8D02 Synchronous Release the CCI Manager access lock

Config 0x8D03 Synchronous Configure the CCI Manager and underlying CCI subsystem

Set Device 0x8D04 Synchronous Set the target CCI device address

Read 0x8D05 Asynchronous Read one or more bytes from a 16−bit address

Write 0x8D06 Asynchronous Write one or more bytes to a 16−bit address

Write Bit−field 0x8D07 Asynchronous Read−modify−write 16−bit data to a 16−bit address

CCI Status 0x8D08 Synchronous Obtain status of current asynchronous operation

http://www.onsemi.com/

AND9930/D

www.onsemi.com
95

CCI MANAGER COMMAND PARAMETERS

EXTENDED TYPES
Table 220 lists the extended parameter types specific to

the CCI Manager subsystem.

Table 220. CCI MANAGER PARAMETER TYPES

Extended Type Size Field Base Type Description

CCIMGR_CONFIG 32 bits CCI_SPEED UINT32 Clock speed of the CCI bus in Hertz: Min = 100000
Max = 400000

GET LOCK
This asynchronous command requests that the Host

obtain the CCI Manager lock.

Command

Table 221.

Size Value Mnemonic Description

16 bits 0x8D00 CCIMGR_GET_LOCK Request to obtain the CCI Manager lock

Command Parameters
None

Result Status

Table 222.

Result Status Code Description

ENOERR Command accepted and in operation

EBUSY Previous Get Lock request has not completed

EALREADY Lock has already been obtained

Command Response Parameters
None

Notes
 The Host must successfully obtain the CCI Manager

access lock before it can issue any other CCI Manager
commands.

 The Host must ensure the access lock is released when
access to the CCI bus is no longer required.

 The Host should minimize the time it owns the access
lock to prevent stalling the operation of the automatic
algorithms of the device.

 The System Manager disables the
SYSMGR_SET_STATE Host command when the Host
requests the CCIM lock. This prevents the Host
requesting system state changes which require the
device to control the sensor.

 The System Manager disables the hard standby pin
when the Host requests the CCIM lock. This prevents
the Host requesting a standby operation which requires
the device to control the sensor.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
96

LOCK STATUS
This synchronous command retrieves the status of a

previous Get Lock request.

Command

Table 223.

Size Value Mnemonic Description

16 bits 0x8D01 CCIMGR_LOCK_STATUS Get status of a Get Lock request

Command Parameters
None

Result Status

Table 224.

Result Status Code Description

ENOERR Get Lock command has completed − Host now owns the access lock

EBUSY Previous Get Lock request has not completed

Command Response Parameters
None

Notes
 The Host can issue further CCI Manager commands

only if this command returns ENOERR.

RELEASE LOCK
This synchronous command releases the CCI Manager’s

access lock.

Command

Table 225.

Size Value Mnemonic Description

16 bits 0x8D02 CCIMGR_RELEASE_LOCK Release the access lock

Command Parameters
None

Result Status

Table 226.

Result Status Code Description

ENOERR Release Lock command has completed

EBUSY Previous Get Lock request has not completed

Command Response Parameters
None

Notes
 The Host cannot issue further CCI Manager commands

once the access lock has been released.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
97

CONFIG
This synchronous command configures the CCI Manager

and the underlying CCI support subsystems.

Command

Table 227.

Size Value Mnemonic Description

16 bits 0x8D03 CCIMGR_CONFIG Configure the CCI Manager and associated subsystems

Command Parameters

Table 228.

Byte Offset Field Type Value Description

+0 Config CCIMGR_CONFIG The desired configuration

Result Status

Table 229.

Result Status Code Description

ENOERR Configure command has completed

EINVAL Requested configuration parameter is invalid

EACCES Host does not own the CCI Manager access lock

Command Response Parameters
None

Notes
 The CCI_SPEED field of the Config parameter is the

desired CCI bus speed in Hertz.

 The AS0148AT firmware uses the following default
configuration: CCI _SPEED: 400000

http://www.onsemi.com/

AND9930/D

www.onsemi.com
98

SET DEVICE
This synchronous command sets the current CCI device

address.

Command

Table 230.

Size Value Mnemonic Description

16 bits 0x8D04 CCIMGR_SET_DEVICE Set the current CCI device

Command Parameters

Table 231.

Byte
Offset Field Type Value Description

+0 Device
Address

UINT8 CCI bus address of device to access, specified as an 8−bit value, where the top 7 bits are the CCI
address, and the least−significant is used for read/write indication.
A value of 0 indicates that the active sensor device address should be selected (as indicated by
CAM_SENSOR_CONTROL_BASE_ADDRESS)

Result Status

Table 232.

Result Status Code Description

ENOERR Device address accepted

EBUSY Previous transaction is still in progress

EACCES Host does not own the CCI Manager access lock

Command Response Parameters
None

Notes
 The Set Device command sets the CCI device address

for all subsequent transfers.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
99

READ

Table 233.

Size Value Mnemonic Description

16 bits 0x8D05 CCIMGR_READ Read one or more bytes from a 16−bit address

Command

Table 234.

Byte Offset Field Type Value Description

+0 Register Address UINT16 Address of CCI device register to read

+2 Length UINT8 1..122 Number of bytes to read

Command Parameters
This asynchronous command requests the CCI Manager

reads one or more bytes from a 16−bit address of a CCI
device.

Result Status

Table 235.

Result Status Code Description

ENOERR Command accepted and transaction in progress

ERANGE Length parameter is out of range

EBUSY Previous transaction is still in−progress

EACCES Host does not own the CCI Manager access lock

Command Response Parameters
None

Notes
 The Read command requests the CCI Manager perform

a CCI transaction to retrieve data from the current CCI
device. The time to do this is indeterminate.

 The Host should use the CCI Status command to
determine if the Read operation has completed, and to
retrieve the read data.

WRITE
This asynchronous command requests the CCI Manager

write one or more bytes to a 16−bit address of a CCI device.

Command

Table 236.

Size Value Mnemonic Description

16 bits 0x8D06 CCIMGR_WRITE Write one or more bytes to a 16−bit address

Command Parameters

Table 237.

Byte Offset Field Type Value Description

+0 Register Address UINT16 Address of CCI device register to write

+2 Length UINT8 1..119 Number of bytes to write

http://www.onsemi.com/

AND9930/D

www.onsemi.com
100

Table 237.

Byte Offset DescriptionValueTypeField

+3 Data[0] UINT8 First byte to write

3+n Data[n] UINT8 Last byte to write

Result Status

Table 238.

Result Status Code Description

ENOERR Command accepted and transaction in progress

ERANGE Length parameter is out of range

EBUSY Previous transaction is still in progress

EACCES Host does not own the CCI Manager access lock

Command Response Parameters
None

Notes
 The Write command requests the CCI Manager perform

a CCI transaction to write data to the current CCI
device. The time to do this is indeterminate.

 The Host should use the CCI Status command to
determine if the Write operation has completed.

WRITE BIT−FIELD
This asynchronous command requests the CCI Manager

perform a read−modify−write operation of 16−bit data to a
16−bit address of the current CCI device.

Command

Table 239.

Size Value Mnemonic Description

16 bits 0x8D07 CCIMGR_WRITE_BITFIELD Read−modify−write data to a CCI device

Command Parameters

Table 240.

Byte Offset Field Type Value Description

+0 Register Address UINT16 Address of CCI device register to write

+2 Data UINT16 Data to write

+4 Mask UINT16 Mask of data to write

Result Status

Table 241.

Result Status Code Description

ENOERR Command accepted and transaction in progress

EBUSY Previous transaction is still in progress

EACCES Host does not own the CCI Manager access lock

Command Response Parameters
None

Notes
 The Write Bit−field command requests the CCI

Manager perform a CCI transaction to read, modify

http://www.onsemi.com/

AND9930/D

www.onsemi.com
101

then write data to the current CCI device. The time to
do this is indeterminate.

 The CCI Manager performs the following operation:
val16 = read (device, address)

val16 &= ~mask

val16 |= data

write (device, address, val16)

 The Host should use the CCI Status command to
determine if the Write Bit−field operation has
completed.

CCI STATUS
This synchronous command retrieves the status of the

current CCI Manager transaction.

Command

Table 242.

Size Value Mnemonic Description

16 bits 0x8D08 CCIMGR_STATUS Retrieve the status of the current transaction

None

Result Status

Table 243.

Result Status Code Description

ENOERR Transaction has completed successfully

ENOENT CCI device failed to respond

EIO Transaction failed − aborted

EBUSY Transaction is still in progress

EACCES Host does not own the CCI Manager access lock

Command Response Parameters
If previous transaction was Read, AND Result Status is

ENOERR:

Table 244.

Byte Offset Field Type Value Description

+0 Data[0] UINT8 First byte read

+n Data[n] UINT8 Last byte read

Notes
A result status of ENOERR indicates that the transaction

last requested has completed. In the case of the Read

command, the Host can now retrieve the requested data from
the Parameters Pool.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
102

SENSOR MANAGER
The Sensor Manager exports a Host interface to request

discovery and initialization of the sensor attached to the
AS0148AT.

OVERVIEW
The Sensor Manager automatically discovers and

initializes the sensor attached to the AS0148AT. This occurs
during the first Change−Config operation (just prior to
entering the streaming state). The Sensor Manager only
supports a fixed number of sensors. If the sensor attached is

not recognized, the system cannot enter streaming and the
Change− Config will be rejected.

The Sensor Manager Host command interface is provided
to allow the Host (prior to the first Change−Config) to
discover which sensor is attached, and load and apply the
appropriate firmware patch, to add support for the attached
sensor.

SUMMARY
Table 245 summarizes the Sensor Manager Host

commands.

Table 245. SENSOR MANAGER HOST COMMANDS

Sensor Manager Host Com-
mand Value Type Description

Discover Sensor 0x8E00 Synchronous Discover sensor

Initialize Sensor 0x8E01 Synchronous Initialize attached sensor

Sensor Manager Command Parameters
None

DISCOVER SENSOR HOST COMMAND
This synchronous command requests that the Sensor

Manager attempt to discover the sensor attached to the

AS0148AT. This command allows a Host to determine the
model and revision of the attached sensor, so that the
appropriate patches can be loaded prior to initializing it.

Command

Table 246.

Size Value Mnemonic Description

16 bits 0x8E00 SENSOR_MGR_DISCOVER_SENSOR Discover sensor

Command Parameters
None

Result Status

Table 247.

Result Status Code Description

ENOERR Command completed successfully − sensor was detected

EIO IO error occurred

ENOENT Failed to detect any sensor

EBUSY Failed to obtain CCIM lock − retry

EACCES Cannot perform sensor discovery at this time − retry

EALREADY The sensor has already been discovered. It can only be performed once.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
103

Command Response Parameters

Table 248.

Byte Offset Field Type Value Description

+0 CCI Address UINT8 The CCI address of the detected sensor

+1 Revision UINT8 The revision of the detected sensor

+2 Model ID UINT16 The model ID of the detected sensor

Notes
 The sensor will be reset prior to discovery.

 The command will fail with EBUSY if the Host has the
CCIM lock.

 The sensor can only be discovered when the system is
in the IDLE or SUSPENDED states. The command will
fail with EACCES if the system is not in a state that can
support discovery.

 The sensor discovery operation can only be performed
once following reset or power− up – attempting to issue

this command a second time will be rejected with
EALREADY.

INITIALIZE SENSOR HOST COMMAND
This synchronous command requests that the Sensor

Manager initialize the sensor attached to the AS0148AT.
This command allows a Host to manually initialize the
sensor prior to the auto−initialization that occurs during the
first Config−Change command processing, or at any other
time.

Command

Table 249.

Size Value Mnemonic Description

16 bits 0x8E01 SENSOR_MGR_INITIALIZE_SENSOR Initialize attached sensor

Command Parameters
None

Result Status

Table 250.

Result Status Code Description

ENOERR Command completed successfully − sensor initialized

EIO IO error occurred

ENOENT No sensor attached

EBADF Attached sensor is unsupported

EBUSY Failed to obtain CCIM lock − retry

EACCES Cannot perform sensor initialization at this time − retry

Command Response Parameters
None

Notes
 The sensor will be initialized. All sensor default records

stored in NVM will be applied.
 The command will fail with ENOENT if no sensor is

attached, or if the discovery process has not been
performed (see“Discover Sensor Host Command” on
page 116).

 The command will fail with EBADF if the attached
sensor is not supported. The appropriate firmware patch

should be loaded and applied, and the command
reissued.

 The command will fail with EBUSY if the Host has the
CCIM lock.

 The sensor can only be initialized when the system is in
the IDLE or SUSPENDED states. The command will
fail with EACCES if the system is not in a state that can
support initialization.

 The sensor initialization operation can only be
performed once following reset or power−up –

http://www.onsemi.com/

AND9930/D

www.onsemi.com
104

attempting to issue this command a second−time will be
rejected with EALREADY.

NETWORK COMMANDS

OVERVIEW OF NETWORK HOST COMMANDS

The three types of network host commands are as follows:
1. Access commands are used to read and write the

registers, firmware variables, and memory
locations of both processors. They provide the
same functionality as the basic register−level
access operations on the CCI interface. These
commands can only be used in Ethernet mode
once the Ethernet subsystem is up and running.
They can− not be used in NVM records.

2. Control commands are used to control various
aspects of the Ethernet subsystem and to get status
information. These commands can only be used in
Ethernet mode once the Ethernet subsystem is up
and running. They cannot be used in NVM
records.

3. Configuration commands are used to configure the
Ethernet subsystem. In general, these commands
are meant to be used in NVM records in order to
get the Ethernet subsystem configured and
accepting request packets. A host can also send
these commands over the CCI interface in Hybrid
mode. Almost all configuration commands are
very similar or even identical to access and control
commands that have the same capabilities.
However, configuration commands cannot be
issued over the Ethernet interface.

SUMMARY
Table 251 provides a summary of the Network host

commands. Since all Network host commands are
synchronous, the Type field refers to the three command
types outlined above. Note that the host commands are
ordered in the table according to type first, then by numerical
command ID.

Table 251. NETWORK HOST COMMANDS

Network Host Command Command ID Type Description

NET_GET_*, NET_SET_* 0xC400 − 0xCBFF Access Get or set registers, firmware variables, or memory loca-
tions

NET_CTRL _GET_RTC_TIME 0xC220 Control Get the current RTC time

NET_CTRL _SET_TIME_SYNC_STATE 0xC221 Control Set the current time synchronization state

NET_CTRL _GET_ETHERNET_STATS 0xC230 Control Get and optionally reset error counts and statistics for
Ethernet & TCP/IP stack

NET_CFG_STARTUP 0xC202 Config Start up Ethernet subsystem

Network Access Commands
Each of the synchronous network access host commands

gets or sets one or more registers, firmware variables, or
memory locations in the address space of the either the main
system processor (”ISP”). It is the only way these operations
can be done over the Ethernet interface.

Each of these host commands has encoded in its command
ID the following information:
 The type of operation to perform (GET or SET)

 The specific type of item to access:
 REG for registers
 VAR for firmware variables

 OVL0, OVL1, OVL2, and OVL3 for overlay
registers/memory

 RAW for unmanaged XDMA access to address
space

 The size of each item to access (8, 16, or 32 bits at a
time)
The full list of network access host commands is shown

in Appendix I.
All network access host commands have a similar

parameter syntax, which is described in the following
sections.

Command

Table 252.

Size Value Mnemonic Description

16 bits 0xC400 − 0xCBFF NET_GET_*, NET_SET_* (See
Appendix I for full list)

Get or set a block of registers, firmware variables, or memory loca-
tions.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
105

Command Parameters

Table 253.

Byte Offset Field Type Value Description

+0 Start Address UINT16 Starting address of block of items to read or
write

+2 Item Count Code UINT16 0 − [Max Count Code] One less than the number of 8−bit, 16−bit, or
32− bit items to read or write (see Appendix J
for the list of maximum item counts allowed
here)

+4 Write Data UINT{8,16,32} * N List of items to write if command is a
NET_SET_* command, packed on item size
boundaries.

Result Status

Table 254.

Result Status Code Description

ENOERR Values written to or read from target address space

EINVAL Incorrect number of parameter bytes given, or starting address not aligned according to item size

ERANGE Operation would cause address to go out of range − no accesses performed

Command Response Parameters

Table 255.

Byte Offset Field Type Value Description

+0 Read Data UINT{8,16,32} * N List of items read if this was a NET_GET_* command, packed on item
size boundaries.

Notes
 The first parameter specifies the starting address for the

access command. It must be aligned to the size of each
item accessed. It must also be a low enough value such
that the block of operations starting at that address will
completely fit in the address space.

 The item count code has a value one less than the
number of items (not bytes) to be transferred. For
example, if the item size of the host command is 16
bits, then an item count code of 6 specifies that 7 16−bit
words would be transferred, for a total of 14 bytes. The
maximum item count allowed for each command type
is detailed in Appendix J.

 If the command is a NET_SET_* host command, then
the data to write immediately follows the item count
code, starting with the lowest addressed item and
working steadily towards higher addresses. In this case,
no response data is returned. If the command is a

NET_GET_* host command, then only the first two
parameters (Start Address and Item Count Code) are
used; the data retrieved is returned in the response data
block.

 The parameter values are analyzed before any accesses
are done. If the parameter values would cause only part
of the block of accesses to be performed, no accesses
are performed at all, and ERANGE is returned.

 All accesses are done as soon as the host command is
received. Since this is a synchronous host command, all
other system processing is suspended until the block of
operations is complete. Therefore access commands
that specify a large range of addresses should only be
used at system startup before video is streaming.

NETWORK CONTROL COMMAND: GET RTC TIME
This synchronous control host command reads the

real−time clock (RTC).

http://www.onsemi.com/

AND9930/D

www.onsemi.com
106

Command

Table 256.

Size Value Mnemonic Description

16 bits 0xC220 NET_CTRL_GET_RTC_TIME Read RTC

Table 257.

Result Status Code Description

ENOERR Operation completed successfully

EBUSY RTC is not synchronized, no response parameters

Command Parameters Result Status
None.

Command Response Parameters

Table 258.

Byte Offset Field Type Value Description

+0 Seconds upper 16 bits UINT16 Upper 16 bits of 48−bit seconds portion

+2 Seconds lower 32 bits UINT32 Lower 32 bits of 48−bit seconds portion

+6 Nanoseconds UINT32 Nanoseconds portion

Notes
At some point in the decoding of this command the host

signals the hardware to capture the current RTC counter
value. This is the value returned. The time between receipt
of the command and capture of the time is not fixed and
depends on system load.

NETWORK CONTROL COMMAND: SET TIME SYNC
STATE

This synchronous control host command sets the
operating mode of the RTC−based sync pulse generator.

Command

Table 259.

Size Value Mnemonic Description

16 bits 0xC221 NET_CTRL_ SET_TIME_SYNC_STATE Set state of the RTC−based sync pulse generator

Command Parameters

Table 260.

Byte Offset Field Type Value Description

+0 Mode UINT8 0−2 0: Stop
1: Run
2: Test

+1 First Pulse Time Seconds Upper 16 UINT16 Time first pulse should occur, seconds portion, upper 16 bits

+3 First Pulse Time Seconds Lower 32 UINT32 Time first pulse should occur, seconds portion, lower 32 bits

+7 First Pulse Time Nanoseconds UINT32 Time first pulse should occur, nanoseconds portion

+11 Period Nanoseconds UINT32 Period of sync pulses, nanoseconds portion

+15 Period Fractional Nanoseconds UINT16 Period of sync pulses, fractional nanoseconds (2^−16) portion

http://www.onsemi.com/

AND9930/D

www.onsemi.com
107

Result Status

Table 261.

Result Status Code Description

ENOERR Operation completed successfully

EBUSY RTC is not synchronized, no pulses will be generated

EINVAL Mode is not 0−2, or time for first pulse is not within 2^48 seconds of current time

Command Response Parameters
None.

Notes
 Mode 0 inhibits sync pulse generation.

 Mode 1 starts sync pulse generation at the moment the
RTC matches the requested start time. If the start time
is already in the past, the time of the next future sync
pulse is computed and used as the start time. The time
of future sync pulses is computed based on the
requested period and start time.

 Mode 2 is a test mode. It computes the start time based
on the current RTC value. It adds two to the seconds
portion and clears the nanoseconds portion. The period
is equivalent to 30 pps.

NETWORK CONTROL COMMAND: GET ETHERNET
STATISTICS

This synchronous control host command reads statistical
values from the Ethernet system.

Command

Table 262.

Size Value Mnemonic Description

16 bits 0xC230 NET_CTRL_ GET_ETHERNET_STATS Get and optionally reset Ethernet statistics.

Command Parameters

None.

Table 263.

Byte Offset Field Type Value Description

+0 Page UINT8 0−1 0: Hardware (MAC)
1: IP stack

+1 Clear UINT8 Clear accumulated stats after reading (page 0 only)

Result Status

Table 264.

Result Status Code Description

ENOERR Operation completed successfully

ERANGE Invalid page requested

Command Response Parameters
For page 0:

Table 265.

Byte Offset Field Type Value Description

+0 Rx PHY Errors UINT32 PHY errors passed to MAC count

+4 Rx RMII Start Errors UINT32 RMII start error count

+8 Rx IFG Errors UINT32 Interframe gap violation count

http://www.onsemi.com/

AND9930/D

www.onsemi.com
108

Table 265.

Byte Offset DescriptionValueTypeField

+12 Rx Preamble Errors UINT32 Preamble error count

+16 Rx SFD Errors UINT32 Start of Frame Delimiter error count

+20 Rx Nibble Errors UINT32 MII mode nibble error count

+24 Rx Packet Size Errors UINT32 Count of packets that violated packet minimum or
maximum sizes

+28 Rx MAC FIFO Fill Errors UINT32 Count of the number of times the MAC receive FIFO
reached full in the middle of a packet

+32 Rx CRC Errors UINT32 Frame Check Sequence error count

+36 Tx Errors UINT32 MAC transmit error count

For page 1:

Table 266.

Byte Offset Field Type Value Description

+0 Tx Packets UINT32 Number of packets transmitted

+4 Rx Packets UINT32 Number of packets received

+8 Tx Bytes UINT32 Number of bytes transmitted

+12 Rx Bytes UINT32 Number of bytes received

+16 Tx Packets Dropped UINT32 Number of Tx packets dropped

+20 Rx Packets Dropped UINT32 Number of Rx packets dropped

+24 Rx Checksum Errors UINT32 Number of Rx Checksum errors

+28 Invalid Packets UINT32 Number of invalid packets

Notes
 If the response code is not ENOERR, no response

parameters will be returned.

NETWORK CONFIGURATION COMMAND: START UP
SUBSYSTEM

This host command starts up the Ethernet subsystem using
the current values in the ISP’s NET_CFG firmware variable
page as configuration parameters.

Command

Table 267.

Size Value Mnemonic Description

16 bits 0xC202 NET_CFG_STARTUP Start up the Ethernet subsystem

Table 268.

Result Status Code Description

ENOERR The Ethernet subsystem was started up successfully.

EINVAL The Ethernet subsystem failed to start because errors were found in the NET_CFG firmware variable
page.

ENODEV The Ethernet subsystem failed to start because no PHY chip was found.

EALREADY The Ethernet subsystem is already running.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
109

Command Parameters Result Status
None.

Command Response Parameters
None.

Notes
 This command causes all configuration data to be sent

from the NET_CFG firmware variable page to the
Ethernet subsystem processor. Once all configuration
data is sent, the Ethernet subsystem is started up.

 Once the Ethernet subsystem is running, the NET_CFG
firmware variable page is ignored. Changes to
NET_CFG firmware variables after the Ethernet
subsystem has started up have no effect.

 In Ethernet mode, this command is automatically
executed after all NVM record processing has

completed normally if the Ethernet subsystem has not
yet been started. This command is therefore optional in
Ethernet mode.

 In Hybrid mode, this command is automatically
executed during a SET_STATE command if the new
state starts streaming video over Ethernet and the
Ethernet subsystem has not yet been started.

USER COMMANDS
 The AS0148AT Host Command Interface is

extensible−firmware patches can be applied which
support additional Host commands. A range of user
command codes is therefore reserved.

Command

Table 269.

Size Value Mnemonic Description

16 bits 0x9000 USER_COMMAND_BASE Base of user command range

16 bits 0x90FF USER_COMMAND_LIMIT (Inclusive) limit of user command range

http://www.onsemi.com/

AND9930/D

www.onsemi.com
110

APPENDIX A: BIG−ENDIAN ENCODING
All 16− and 32−bit data values are encoded in big−endian

format − this stores the most− significant data byte at the
least−significant (lower) address. For example, the 16−bit
value 0x1234 would be stored in memory as:
Byte Address Offset +0x0: 0x12 Byte Address

Offset +0x1: 0x34

The 32−bit value 0x12345678 would be stored in memory
as:

Byte Address Offset +0x0: 0x12 Byte Address

Offset +0x1: 0x34 Byte Address Offset +0x2:

0x56 Byte Address Offset +0x3: 0x78

APPENDIX B: SPI NON−VOLATILE MEMORY
DEVICE SUPPORT

SPI COMMAND SET
The firmware uses the following SPI NVM device

commands to implement the Flash Manager host
commands. These are detailed in Table 270.

Table 270. SPI NVM DEVICE COMMANDS

SPI Commands Code
Used for Flash

Driver ID
Used for EEPROM

Driver ID
Used for Generic Read−only

Driver ID

Write Status 0x01 X X

Write / Page Program 0x02 X X

Read 0x03 X X X

Read Status 0x05 X X X

Write Enable 0x06 X X

Read (fast) 0x0B X

Chip Erase 0xC7 X

Block Erase (64k) 0xD8 X

Read Manufacturer ID 0xF9 X X

DEVICE DISCOVERY PROCESS
The process first issues the Read Manufacturer ID SPI

NVM command. This is supported by JEDEC−compliant
Flash devices. It returns a 3−byte identification code. If this
code is non−zero, and also not all 0xFFs, a
JEDEC−compliant Flash device is present and discovery
completes.

If a JEDEC−compliant Flash device is present the 3−byte
identification code is reported in the manuID, deviceID1
and deviceID2 fields as reported by the Query Device
command
− see “Query Device” on page 90). The Host can

use the Query Device command to detect the type

of device fitted.

If a JEDEC−compliant Flash device is not present, the
firmware then reads 8 bytes from the SPI interface to attempt
to discover the presence of an EEPROM device. The firm−
ware reads from address 0x0 of the NVM device, looking for
the known Version ID field of the TOC record. If this is
located an SPI EEPROM is present and discovery
completes.

If an NVM device was detected, the Flash Manager
automatically mounts the appro− priate generic read−only
driver for the device (SPI Flash or SPI EEPROM).

PROGRAMMING NVM
The firmware automatically mounts the appropriate

generic read−only driver for the attached NVM device

during device discovery. If the Host wishes to program the
attached NVM device, it must use the Config Device
command to select the appropriate read−write driver.

The DRIVER_ID parameter of the Config Device
command identifies the type of NVM device that is attached
(the assumption being that the Host knows the type and
capacity of the attached device). The DRIVER_ID
parameter should be set to either:
 1 if the NVM device is an SPI Flash

 2 if the NVM device is an SPI EEPROM

NOTE: If the actual capacity of the NVM device is
smaller than the SIZE parameter to Config
Device, the results of erasing, or writing to, an
address outside the device’s capacity are
indeterminate.

TYPICAL NVM DEVICE CONFIGURATION VALUES
Table 271 contains typical values for the parameters of the

Config Device command for select devices. In this table, 1
kbyte = 1024 bytes; 1 Mbyte = 1024 kbytes = 1024*1024
bytes = 1,048,576 bytes. The SIZE parameter in this table is
shown in these convenient units, but the actual command
argument is in bytes. All of the listed flash devices support
the use of the fast read command, none of the EEPROM
devices support the fast read command. That parameter field
is not included in this table for brevity.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
111

Table 271. TYPICAL NVM DEVICE CONFIG PARAMETERS

Manufacturer Device
manuID deviceID1

deviceID2

Type, DRIVER ID

Parameter Field

SIZE
Parameter Field

(bytes)

ADDRESS WIDTH
Parameter Field

(bytes)

Atmel AT26DF081A 0x1F4501 Flash, 1 1 Mbyte 3

Atmel AT25DF161 0x1F4602 Flash, 1 2 Mbyte 3

Sanyo LE25FW806 0x622662 Flash, 1 1 Mbyte 3

ST M25P05A 0x202010 Flash, 1 64 kbyte 3

ST M25P40 0x202013 Flash, 1 512 kbyte 3

ST M25P80 0x202014 Flash, 1 1 Mbyte 3

ST M25P16 0x202015 Flash, 1 2 Mbyte 3

ST M25P32 0x202016 Flash, 1 4 Mbyte 3

ST M95040 0x20FFFF EEPROM, 2 512 byte 1

ST M95020 0x20FFFF EEPROM, 2 256 byte 1

ST M95010 0x20FFFF EEPROM, 2 128 byte 1

ST M95M01 0x20FFFF EEPROM, 2 128 kbyte 3

Microchip M25AA080 0x29FFFF EEPROM, 2 1 kbyte 2

Microchip M25LC080 0x29FFFF EEPROM, 2 1 kbyte 2

SPI BUS SPEEDS
The available SPI bus speeds are dependent upon the pixel

clock configuration of the device. The AS0148AT derives
the SPI bus clock from the pixel clock, via a configurable

clock divider. This can support divisors in the range of 3
through 32. The Flash Manager’s Config command will
calculate the appropriate divisor to achieve the nearest (less
than or equal) value to the requested SPI_SPEED parameter.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
112

APPENDIX C: COMMAND SEQUENCE SUPPORT
The AS0148AT supports a Command Sequence

Processor, which allows Host commands to be executed
from a command sequence record stored in NVM or OTPM.
However, the Processor does not support every command.
Unsupported Host commands should not be encoded into
command sequence records; their usage within command
sequences will cause indeterminate effects.

Note that the Init Table, Patch Init Table, Calibration Table
and Overlay Init Table records are also command sequences,
except that they are processed automatically by the firm−
ware during the System Configuration phase. The same
rules apply to these records as to Command Sequence
records.

Note that all commands operate synchronously when
executed by the Command Sequence processor. When an
asynchronous command is executed, the firmware has an

internal mechanism to delay the execution of the next
command in the sequence until the asynchronous command
completes.

Note that some commands have no effect when executed
within a command sequence. This is because they return a
Result Status, or store response parameters into the
Parameters Pool. The Command Sequence Processor cannot
operate on this data. Commands with no effect are indicated
in Table 272 an ’*’

The Command Sequence Processor also does not support
direct writes to the Command register (encoded into
REGISTER_SET_V1 records); this will result in undefined
behavior. All host commands should be encoded into a
COMMAND_V1 record.

The supported and unsupported commands are detailed in
Table 272:

Table 272. COMMAND SEQUENCE PROCESSOR COMMAND SUPPORT

Command Description
Supported by Command Sequence Pro-

cessor

SYSMGR_SET_STATE Set the system state Limited Support.
This command cannot be encoded within
any record that will be processed during the
System Configuration phase (see Appendix
G.1). This command can only be encoded
with the SYS_STATE_ENTER_CON-
FIG_CHANGE
parameter (see Appendix G.2). Attempting to
change the system to any other state will re-
sult in indeterminate behavior.

SYSMGR_GET_STATE Get the system state Supported*

SYSMGR_CONFIG_POWER_MGMT Configure power management Supported

OVRL_ENABLE Enable overlay Supported

OVRL_GET_STATE Get overlay state Supported*

OVRL_SET_CALIBRATION Set bitmap/string calibration offset Supported

OVRL_SET_BITMAP_PROP Set bitmap property Supported

OVRL_GET_BITMAP_PROP Get bitmap property Supported*

OVRL_SET_STRING0_PROP

OVRL_SET_STRING1_PROP

OVRL_SET_STRING2_PROP

OVRL_SET_STRING3_PROP Set string property Supported

OVRL_LOAD_BUFFER Load buffer (from NVM) Supported

OVRL_LOAD_STATUS Status of last load Supported*

OVRL_WRITE_BUFFER Write to buffer (via CCI) Supported. Intended for use via CCI, use
OVRL_LOAD_BUFFER for Command Se-
quences

OVRL_READ_BUFFER Read buffer (via CCI) Supported*

OVRL_ENABLE_LAYER Enable bitmap layer Supported

OVRL_GET_LAYER_STATUS Get status of bitmap layer Supported*

OVRL_SET_STRING0

http://www.onsemi.com/

AND9930/D

www.onsemi.com
113

Table 272. COMMAND SEQUENCE PROCESSOR COMMAND SUPPORT

Command
Supported by Command Sequence Pro-

cessorDescription

OVRL_SET_STRING1

OVRL_SET_STRING2

OVRL_SET_STRING3 Set string Supported

OVRL_GET_STRING0

OVRL_GET_STRING1

OVRL_GET_STRING2

OVRL_GET_STRING3 Get string Supported*

OVRL_LOAD_STRING0

OVRL_LOAD_STRING1

OVRL_LOAD_STRING2

OVRL_LOAD_STRING3 Load string (from NVM) Supported

OVRL_DRAW_SHAPE Draw lines and arcs Supported

OVRL_SET_COLOR_LUT Set color LUT entries Supported

OVRL_WRITE_USER_CHAR Write to User Character RAM Supported. Intended for use via CCI, use
OVRL_LOAD_USER_CHAR for Command
Sequences

OVRL_LOAD_COLORLUT Load color LUT entries Supported

OVRL_LOAD_USER_CHAR Load User Character RAM Supported

STE_CONFIG Configure from ROM Supported

STE_LOAD_CONFIG Load configuration (from NVM) Supported

STE_LOAD_STATUS Status of last load Supported*

STE_WRITE_CONFIG Write configuration (via CCI) Supported. Intended for use via CCI, use
STE_LOAD_CONFIG for Command Se-
quences

GPIO_SET_PROP Set GPIO pin/group property Supported

GPIO_GET_PROP Get GPIO pin/group property Supported*

GPIO_SET_STATE Set GPIO pin/group state Supported

GPIO_GET_STATE Get GPIO pin/group state Supported*

GPIO_SET_GPI_ASSOC Set GPI association Supported

GPIO_GET_GPI_ASSOC Get GPI association Supported*

FLASHMGR_GET_LOCK Get Flash Manager lock Not Supported. The Command Sequencer
Processor obtains the Flash lock in order to
retrieve the command sequence record from
NVM. Executing this command within a com-
mand sequence will result in a dead−lock.

FLASHMGR_LOCK_STATUS Status of Flash Manager lock Supported*

FLASHMGR_RELEASE_LOCK Release Flash Manager lock Not Supported

FLASHMGR_CONFIG Configure Flash Manager Limited Support. This command is only sup-
ported during the System Configuration
phase (that is, when executed as a result of
initialization table processing).

FLASHMGR_READ Read (from Flash) Not Supported

FLASHMGR_WRITE Write (to Flash) Not Supported

FLASHMGR_ERASE_BLOCK Erase (Flash) block Not Supported

http://www.onsemi.com/

AND9930/D

www.onsemi.com
114

Table 272. COMMAND SEQUENCE PROCESSOR COMMAND SUPPORT

Command
Supported by Command Sequence Pro-

cessorDescription

FLASHMGR_ERASE_DEVICE Erase (Flash) device Not Supported

FLASHMGR_QUERY_DEVICE Query manufacturer and device identifiers Not Supported

FLASHMGR_STATUS Status of last Flash operation Not Supported

FLASHMGR_CONFIG_DEVICE Configure the SPI device attached Limited Support.
This command is only supported during the
System Configuration phase (that is, when
executed as a result of initialization table
processing).

FLASHMGR_VALIDATE_RECORDS Validate contents of attached SPI NVM device Supported

FLASHMGR_VALIDATION_STATUS Status of the last validate records command Supported*

FLASHMGR_ISSUE_DEVICE_CMD Issue low−level SPI device command Not Supported

FLASHMGR_GET_DEVICE_CMD_RESP Get response to a low−level SPI device com-
mand

Not Supported

SEQ_REFRESH Refresh Sequencer Supported

SEQ_REFRESH_STATUS Retrieve status of last refresh request Supported*

PATCHLDR_LOAD_PATCH Load patch (from NVM) Supported

PATCHLDR_STATUS Status of last load operation Supported*

PATCHLDR_APPLY_PATCH Apply patch Not Supported. Use
PATCHLDR_LOAD_PATCH.

PATCHLDR_RESERVE_RAM Allocate RAM to contain patch Not Supported. The
PATCHLDR_LOAD_PATCH command per-
forms this operation before loading the patch
from NVM.

MISC_INVOKE_COMMAND_SEQ Invoke a command sequence (stored in NVM) Supported

MISC_CONFIG_CMDSEQ_PROC Configure the Command Sequence Processor Supported

MISC_WAIT_FOR_EVENT Wait for a System Event Supported

CALIB_STATS_CONTROL Configure and control the Calibration Statistics
engine

Supported

CALIB_STATS_READ Retrieve results from the Calibration Statistics
engine

Supported*

EVENT_MON_SET_ASSOCIATION Associate an system event with a Command
Sequence stored in NVM

Supported

EVENT_MON_GET_ASSOCIATION Retrieve an event association Supported*

CCIMGR_GET_LOCK Obtain the CCI lock Supported

CCIMGR_LOCK_STATUS Status of CCI lock request Supported*

CCIMGR_RELEASE_LOCK Release the CCI lock Supported

CCIMGR_CONFIG Configure the CCI (master) bus Supported

CCIMGR_SET_DEVICE Configure the CCI slave address Supported

CCIMGR_READ Read bytes from the CCI bus Supported*

CCIMGR_WRITE Write bytes to the CCI bus Supported

CCIMGR_WRITE_BITFIELD Read−modify−write to a 16−bit CCI slave regis-
ter

Supported

CCIMGR_STATUS Status of current CCI transaction Supported*

SENSOR_MGR_DISCOVER_SENSOR Discover sensor attached to the AP020X Sup-
ported

http://www.onsemi.com/

AND9930/D

www.onsemi.com
115

Table 272. COMMAND SEQUENCE PROCESSOR COMMAND SUPPORT

Command
Supported by Command Sequence Pro-

cessorDescription

SENSOR_MGR_INITIALIZE_SENSOR Initialize sensor attached to the AP020X Sup-
ported

NET_CFG_* commands Ethernet Subsystem host commands desig-
nated for NVM records

Limited Support Supported in Ethernet and
Hybrid modes only.

NET_CTRL_* commands Ethernet Subsystem host commands desig-
nated for use over Ethernet Interface only

Not Supported Commands are only valid
over Ethernet interface.

NET_GET_* and NET_SET_* commands Access registers, firmware variables, and
memory locations

Not Supported Commands are only valid
over Ethernet interface. Use normal flash
record types for setting registers, variables,
and memory locations.

CHANGING THE SYSTEM STATE DURING THE
SYSTEM CONFIGURATION PHASE

At power−up or reset, the device will enter the System
Configuration phase, where it determines how the system
will be configured. During this time (if so configured) the
device will read data from NVM or OTPM.

The NVM or OTPM contains a number of tables of data
records termed Init Tables (initialization tables). The device
processes each record referenced by an Init Table in turn.
The SYSMGR_SET_STATE command is not permitted to
be encoded within any records referenced by an Init Table.
Note this includes any Command Sequences that could be
invoked by the Init Table. Encoding a system state change
during the System Configuration phase will result in
indeterminate behavior.

To control the next state of the device on completion of the
System Configuration phase, set the
SYSMGR_CONFIG_MODE firmware variable (encoded
within a VARI− ABLE_SET_V2 record). This variable can
be set to either:
 SYSMGR_CONFIG_MODE = AUTO_CONFIG (2)

The system will configure using the default settings.
 SYSMGR_CONFIG_MODE = HOST_CONFIG (3)

The system will enter SYS_STATE_IDLE (0x20) and
wait for further
Host commands.

 SYSMGR_CONFIG_MODE = CHANGE_CONFIG
(4)
The system will apply the current configuration to the

hardware, and then start streaming.
The SYSMGR_CONFIG_MODE variable is processed

by the firmware at the completion of the System
Configuration phase; that is, when all Init Tables have been
processed.

Therefore SYSMGR_CONFIG_MODE can be set within
any Init Table. If SYSMGR_CON− FIG_MODE is not set,
the firmware will go to CONFIG_COMPLETE (5) on
completion of the System Configuration phase.

When the System Configuration phase completes,
SYSMGR_CONFIG_MODE becomes a read−only
variable. The firmware will never read it again.

CHANGING THE SYSTEM STATE FROM COMMAND
SEQUENCES

The device enters the Run−time phase immediately on
completion of the System Configuration phase. During the
Run−time phase, the SYSMGR_SET_STATE command is
permitted to be encoded within COMMAND_V1 records
referenced from Command Sequences. Note however that
only the SYS_STATE_ENTER_CONFIG_CHANGE
state− change can be encoded. Encoding a different state
change will result in indeterminate behavior.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
116

APPENDIX D: SET STATE COMMAND FAILURE
CODES

The System Manager Set State command can be rejected
for a variety of reasons. The System Manager provides three

status variables to allow the Host to determine why the
command was rejected − see Table 274:

Table 273.

System Manager Status Variable Description

SYSMGR_CMD_STATUS Indicates the result status of the last Set State command

SYSMGR_CMD_COMP_ID Indicates which component rejected the command (see Table 274)

SYSMGR_COMD_COMP_FAILURE_ID Component−specific failure identification code (see tables below)

Table 274. SYSTEM COMPONENT IDENTIFIERS

Component Identifiers Description

2 Device Manager − see Table 5

5 CAM Control − see Table 6

7 Sensor Manager − see Table 7 on page 150

12 TX Manager − see Table 8 on page 150

15 STE Manager − see Table 9 on page 150

16 RX Manager − see Table 10 on page 151

Table 275. DEVICE MANAGER FAILURE CODES

Device Manager Code Description

0x0001 Attempting to power off a zone that requires power

Table 276. CAM CONTROL IDENTIFICATION CODES

CAM Control Code Description

0x0001 Sensor window co−ordinates are invalid

0x0002 Crop window co−ordinates are invalid

0x0003 FOV offsets non−zero when selecting Lens Calibration mode

0x0005 Order of discrete frame rates is invalid (should be high−to−low)

0x0009 Parallel port source selection is invalid

0x000B CAM mode selection is invalid

0x000C Failed to claim GPIO pin

0x000D Synchronization type is unsupported

0x000E Attempting to leave Synchronized mode to another mode; can only return to Normal mode

0x000F Attempting to enter Synchronized mode from another mode; can only enter from Normal mode

0x0010 Invalid horizontal crop dimension

0x0011 Invalid vertical crop dimension

0x0013 Either Exposure or White−Balance not in Triggered−Auto mode; both must be in Triggered−Auto mode

0x0014 Output format requires two clocks per pixel, but PLL configuration cannot support this

0x0017 PLL1 required for Ethernet output, but PLL1 configuration cannot support this

0x0018 H.264 requires a constant frame rate configuration

0x0019 H.264 requested image size too small

0x001A H.264 requested bit rate greater than parallel port bit rate

0x001B H.264 image size changed in a refresh operation

http://www.onsemi.com/

AND9930/D

www.onsemi.com
117

Table 276. CAM CONTROL IDENTIFICATION CODES

CAM Control Code Description

0x001C H.264 requires co−sited YCbCr decimation

0x001F STE transform rotation angle greater than maximum allowed

0x0020 H.264 VBR Luma quality parameter too high for 10−bit encoding

0x0021 H.264 VBR Luma quality parameter too high for 8−bit encoding

Table 277. SENSOR MANAGER FAILURE CODES

Sensor Manager Code Description

0x0001 Sensor discovery failed: no sensor attached, or CCI failure

0x0002 Failed to initialize AR0132 sensor: wrong revision

0x0003 Failed to initialize ARX550 sensor: wrong revision

0x0004 Failed to initialize AR0130 sensor: wrong revision

0x0005 Failed to initialize AR0140 sensor: wrong revision

0x0006 Sensor initialization failed: unsupported sensor

0x0007 Sensor initialization failed: CCIM transaction failed

0x0008 Failed to obtain CCIM lock

0x0009 Selected synchronization mode not supported by attached sensor

0x000A Requested exposure mode not supported by the attached sensor

0x000B Failed to initialize ASX0340 sensor: wrong revision

0x000C Failed to initialize AR0230 sensor: wrong revision

0x000D Failed to initialize AR0231 sensor: wrong revision

Table 278. TX MANAGER FAILURE CODES

TX Manager Code Description

0x0001 Invalid parallel port source in CAM_PORT_PARALLEL_SOURCE

0x0004 Invalid Bayer path in CAM_OUTPUT_FORMAT_BAYER_PATH

0x0005 Invalid output format in CAM_OUTPUT_FORMAT

0x000A Ethernet packet size in CAM_PORT_MAX_PACKET_PAYLOAD greater than maximum of 734 16−bit words

0x000B JPEG spoof width greater in CAM_PORT_MAX_PACKET_PAYLOAD greater than maximum of 2048

0x000C CAM_PORT_MAX_PACKET_PAYLOAD value is odd, must be even

Table 279. STE MANAGER FAILURE CODES

STE Manager Code Description

0x0001 Attached sensor is not supported

0x0003 Configuration cache is invalid

0x0004 Configuration cache is corrupt

Table 280. RX MANAGER FAILURE CODES

RX Manager Code Description

0x0001 Invalid test pattern selection in CAM_MODE_TEST_PATTERN_SELECT

http://www.onsemi.com/

AND9930/D

www.onsemi.com
118

APPENDIX E: OVERLAY CALIBRATION
The AS0148AT hardware supports position calibration of

overlay bitmaps in horizontal and vertical directions; this
allows the bitmap position to be adjusted within a +63/−64
pixel range in each direction to allow for manufacturing and
fitting tolerances. The calibration offset is applied to all

bitmaps whose OVRL_PROP_IS_CALIBRATED property
is TRUE.

The default calibration offset is 64 pixels in each
direction. However, the calibration offset can be adjusted for
each device using the Set Calibration command.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
119

APPENDIX F: HOST COMMAND USAGE
EXAMPLE

The following C code shows how a host might implement
a Change Config request using the CCI−based host
command interface.

//--

// typedefs

//--

typedef signed char int8;

typedef unsigned char uint8;

typedef signed short int int16;

typedef unsigned short int uint16;

typedef signed long int int32;

typedef unsigned long int uint32;

typedef signed long long int64;

typedef unsigned long long uint64;

typedef signed int fint;

typedef unsigned int fuint;

//--

// Common error codes

//--

#define ENOERR 0 // no error

#define ENOENT 1 // no such entity

#define EINTR 2 // operation interrupted

#define EIO 3 // I/O failure

#define E2BIG 4 // too big

#define EBADF 5 // bad file/handle

#define EAGAIN 6 // would−block, try again

#define ENOMEM 7 // not enough memory/resource

#define EACCES 8 // permission denied

#define EBUSY 9 // entity busy, cannot support operation

#define EEXIST 10 // entity exists

#define ENODEV 11 // device not found

#define EINVAL 12 // invalid argument

#define ENOSPC 13 // no space/resource to complete

#define ERANGE 14 // parameter out−of−range

#define ENOSYS 15 // operation not supported

#define EALREADY 16 // already requested/exists

//--

// Command Handler constants

//--

#define CMD_HANDLER 31

#define PARAMS_POOL_0 0

#define PARAMS_POOL_1 2

#define PARAMS_POOL_2 4

#define PARAMS_POOL_3 6

#define PARAMS_POOL_4 8

http://www.onsemi.com/

AND9930/D

www.onsemi.com
120

#define PARAMS_POOL_5 10

#define PARAMS_POOL_6 12

#define PARAMS_POOL_7 14

//--

// Host Commands

//--

#define SYSMGR_SET_STATE 0x8100

#define SYSMGR_GET_STATE 0x8101

//--

// System States

//--

#define SYS_STATE_ENTER_CONFIG_CHANGE 0x28

#define SYS_STATE_STREAMING 0x31

//--

// Registers

//--

#define COMMAND_REG 0x0040 #define COMMAND_REG_DOORBELL_BIT (1 << 15)

//--

// The following functions MUST be supplied by the Host, to provide

// read/write access to the CCI registers of the SOC

//--

// writes val to register reg

extern void writeReg16(uint16 reg, uint16 val);

// returns contents of register reg extern uint16 readReg16(uint16 reg);

// writes val to 16-bit variable at address var

extern void writeVar16(uint16 drv, uint16 off, uint16 val);

// returns 16-bit variable at address var

extern uint16 readVar16(uint16 var, uint16 off);

// returns 32-bit variable at address var

extern uint32 readVar32(uint16 var, uint16 off);

//--

// issues a host command, and waits for response

// - returns result status

//--

int issueCommand(uint16 host_command)

{

fuint timeout = 100;

// issue the command writeReg16(COMMAND_REG, host_command);

// and wait for response to confirm command was accepted while (0 != timeout)

{

uint16 res = readReg16(COMMAND_REG);

// check if the doorbell bit is clear (0x8000) if ((res & COMMAND_REG_DOORBELL_BIT) == 0)

{ // return the result status return (int)res;

}

timeout -= 1;

}

// device failed to respond return EAGAIN;

}

//--

// issues the SYSMGR_SET_STATE command

//--

int setState(uint8 next_state)

{

// set the desired next state in MSB of params pool 0 writeVar16(0xFC00

/*CMD_HANDLER_PARAMS_POOL_0*/, next_state << 8); return issueCommand(SYSMGR_SET_STATE);

}

//--

// issues the SYSMGR_GET_STATE command

//--

http://www.onsemi.com/

AND9930/D

www.onsemi.com
121

int getState(uint8 *current_state)

{

int res = issueCommand(SYSMGR_GET_STATE);

if ((0 == res) && (NULL != current_state))

{

// retrieve current state from MSB of params pool 0

*current_state = (readVar16(0xFC00 /*CMD_HANDLER_PARAMS_POOL_0*/) >> 8);

}

return res;

}

//--

// requests a Change-Config state change, waits for completion, then

// checks system is streaming

//--

int changeConfig(void)

{

uint32 timeout = 100; uint8 current_state;

int res = setState(SYS_STATE_ENTER_CONFIG_CHANGE); if (ENOERR != res) return res;

//

// wait for state change to complete while (0 != timeout)

{

res = getState(¤t_state);

if (0 == res) break; // we're done

if (EBUSY != res) return res; // something failed timeout -= 1;

}

if (0 == timeout) return EAGAIN; // host failed to respond in time

// check the current state

if (SYS_STATE_STREAMING != current_state) return EINVAL;

return ENOERR;

}

http://www.onsemi.com/

AND9930/D

www.onsemi.com
122

APPENDIX G: CHARACTER ROM
The AS0148AT Overlay character ROM contains the

characters in Table 281.

Table 281. CHARACTER ROM

Index (hex)
Unicode code

Point Char

UTF−8

Name(hex)

0x00 U+0020 0x20 SPACE

0x01 U+0021 ! 0x21 EXCLAMATION MARK

0x02 U+0022 “ 0x22 QUOTATION MARK

0x03 U+0023 # 0x23 NUMBER SIGN

0x04 U+0024 $ 0x24 DOLLAR SIGN

0x05 U+0025 % 0x25 PERCENT SIGN

0x06 U+0026 & 0x26 AMPERSAND

0x07 U+0027 ’ 0x27 APOSTROPHE

0x08 U+0028 (0x28 LEFT PARENTHESIS

0x09 U+0029) 0x29 RIGHT PARENTHESIS

0x0A U+002A * 0x2A ASTERISK

0x0B U+002B + 0x2B PLUS SIGN

0x0C U+002C , 0x2C COMMA

0x0D U+002D − 0x2D HYPHEN−MINUS

0x0E U+002E . 0x2E FULL STOP

0x0F U+002F / 0x2F SOLIDUS

0x10 U+0030 0 0x30 DIGIT ZERO

0x11 U+0031 1 0x31 DIGIT ONE

0x12 U+0032 2 0x32 DIGIT TWO

0x13 U+0033 3 0x33 DIGIT THREE

0x14 U+0034 4 0x34 DIGIT FOUR

0x15 U+0035 5 0x35 DIGIT FIVE

0x16 U+0036 6 0x36 DIGIT SIX

0x17 U+0037 7 0x37 DIGIT SEVEN

0x18 U+0038 8 0x38 DIGIT EIGHT

0x19 U+0039 9 0x39 DIGIT NINE

0x1A U+003A : 0x3A COLON

0x1B U+003B ; 0x3B SEMICOLON

0x1C U+003C < 0x3C LESS−THAN SIGN

0x1D U+003D = 0x3D EQUALS SIGN

0x1E U+003E > 0x3E GREATER−THAN SIGN

0x1F U+003F ? 0x3F QUESTION MARK

0x20 U+0040 @ 0x40 COMMERCIAL AT

0x21 U+0041 A 0x41 LATIN CAPITAL LETTER A

0x22 U+0042 B 0x42 LATIN CAPITAL LETTER B

http://www.onsemi.com/

AND9930/D

www.onsemi.com
123

Table 281. CHARACTER ROM

UTF−8
Unicode code

Index (hex) Name(hex)Char
Unicode code

Point

0x23 U+0043 C 0x43 LATIN CAPITAL LETTER C

0x24 U+0044 D 0x44 LATIN CAPITAL LETTER D

0x25 U+0045 E 0x45 LATIN CAPITAL LETTER E

0x26 U+0046 F 0x46 LATIN CAPITAL LETTER F

0x27 U+0047 G 0x47 LATIN CAPITAL LETTER G

0x28 U+0048 H 0x48 LATIN CAPITAL LETTER H

0x29 U+0049 I 0x49 LATIN CAPITAL LETTER I

0x2A U+004A J 0x4A LATIN CAPITAL LETTER J

0x2B U+004B K 0x4B LATIN CAPITAL LETTER K

0x2C U+004C L 0x4C LATIN CAPITAL LETTER L

0x2D U+004D M 0x4D LATIN CAPITAL LETTER M

0x2E U+004E N 0x4E LATIN CAPITAL LETTER N

0x2F U+004F O 0x4F LATIN CAPITAL LETTER O

0x30 U+0050 P 0x50 LATIN CAPITAL LETTER P

0x31 U+0051 Q 0x51 LATIN CAPITAL LETTER Q

0x32 U+0052 R 0x52 LATIN CAPITAL LETTER R

0x33 U+0053 S 0x53 LATIN CAPITAL LETTER S

0x34 U+0054 T 0x54 LATIN CAPITAL LETTER T

0x35 U+0055 U 0x55 LATIN CAPITAL LETTER U

0x36 U+0056 V 0x56 LATIN CAPITAL LETTER V

0x37 U+0057 W 0x57 LATIN CAPITAL LETTER W

0x38 U+0058 X 0x58 LATIN CAPITAL LETTER X

0x39 U+0059 Y 0x59 LATIN CAPITAL LETTER Y

0x3A U+005A Z 0x5A LATIN CAPITAL LETTER Z

0x3B U+005B [0x5B LEFT SQUARE BRACKET

0x3C U+005C \ 0x5C REVERSE SOLIDUS

0x3D U+005D] 0x5D RIGHT SQUARE BRACKET

0x3E U+005E ^ 0x5E CIRCUMFLEX ACCENT

0x3F U+005F _ 0x5F LOW LINE

0x40 U+0060 ’ 0x60 GRAVE ACCENT

0x41 U+0061 a 0x61 LATIN SMALL LETTER A

0x42 U+0062 b 0x62 LATIN SMALL LETTER B

0x43 U+0063 c 0x63 LATIN SMALL LETTER C

0x44 U+0064 d 0x64 LATIN SMALL LETTER D

0x45 U+0065 e 0x65 LATIN SMALL LETTER E

0x46 U+0066 f 0x66 LATIN SMALL LETTER F

0x47 U+0067 g 0x67 LATIN SMALL LETTER G

0x48 U+0068 h 0x68 LATIN SMALL LETTER H

http://www.onsemi.com/

AND9930/D

www.onsemi.com
124

Table 281. CHARACTER ROM

UTF−8
Unicode code

Index (hex) Name(hex)Char
Unicode code

Point

0x49 U+0069 i 0x69 LATIN SMALL LETTER I

0x4A U+006A j 0x6A LATIN SMALL LETTER J

0x4B U+006B k 0x6B LATIN SMALL LETTER K

0x4C U+006C l 0x6C LATIN SMALL LETTER L

0x4D U+006D m 0x6D LATIN SMALL LETTER M

0x4E U+006E n 0x6E LATIN SMALL LETTER N

0x4F U+006F o 0x6F LATIN SMALL LETTER O

0x50 U+0070 p 0x70 LATIN SMALL LETTER P

0x51 U+0071 q 0x71 LATIN SMALL LETTER Q

0x52 U+0072 r 0x72 LATIN SMALL LETTER R

0x53 U+0073 s 0x73 LATIN SMALL LETTER S

0x54 U+0074 t 0x74 LATIN SMALL LETTER T

0x55 U+0075 u 0x75 LATIN SMALL LETTER U

0x56 U+0076 v 0x76 LATIN SMALL LETTER V

0x57 U+0077 w 0x77 LATIN SMALL LETTER W

0x58 U+0078 x 0x78 LATIN SMALL LETTER X

0x59 U+0079 y 0x79 LATIN SMALL LETTER Y

0x5A U+007A z 0x7A LATIN SMALL LETTER Z

0x5B U+007B { 0x7B LEFT CURLY BRACKET

0x5C U+007C | 0x7C VERTICAL LINE

0x5D U+007D } 0x7D RIGHT CURLY BRACKET

0x5E U+007E ~ 0x7E TILDE

0x5F EMPTY (UNUSED)

0x60 U+00A0 0xC2A0 NO−BREAK SPACE

0x61 U+00A1 ¡ 0xC2A1 INVERTED EXCLAMATION MARK

0x62 U+00A2 ¢ 0xC2A2 CENT SIGN

0x63 U+00A3 £ 0xC2A3 POUND SIGN

0x64 U+00A4 ¤ 0xC2A4 CURRENCY SIGN

0x65 U+00A5 ¥ 0xC2A5 YEN SIGN

0x66 U+00A6 ¦ 0xC2A6 BROKEN BAR

0x67 U+00A7 § 0xC2A7 SECTION SIGN

0x68 U+00A8 ¨ 0xC2A8 DIAERESIS

0x69 U+00A9 © 0xC2A9 COPYRIGHT SIGN

0x6A U+00AA ª 0xC2AA FEMININE ORDINAL INDICATOR

0x6B U+00AB ’’ 0xC2AB LEFT−POINTING DOUBLE ANGLE QUOTATION MARK

0x6C U+00AC ¬ 0xC2AC NOT SIGN

0x6D U+00AD 0xC2AD SOFT HYPHEN

0x6E U+00AE ® 0xC2AE REGISTERED SIGN

http://www.onsemi.com/

AND9930/D

www.onsemi.com
125

Table 281. CHARACTER ROM

UTF−8
Unicode code

Index (hex) Name(hex)Char
Unicode code

Point

0x6F U+00AF ¯ 0xC2AF MACRON

0x70 U+00B0 ° 0xC2B0 DEGREE SIGN

0x71 U+00B1 ± 0xC2B1 PLUS−MINUS SIGN

0x72 U+00B2 ² 0xC2B2 SUPERSCRIPT TWO

0x73 U+00B3 ³ 0xC2B3 SUPERSCRIPT THREE

0x74 U+00B4 ´ 0xC2B4 ACUTE ACCENT

0x75 U+00B5 μ 0xC2B5 MICRO SIGN

0x76 U+00B6 ¶ 0xC2B6 PILCROW SIGN

0x77 U+00B7 · 0xC2B7 MIDDLE DOT

0x78 U+00B8 ¸ 0xC2B8 CEDILLA

0x79 U+00B9 ¹ 0xC2bB9 SUPERSCRIPT ONE

0x7A U+00BA º 0xC2BA MASCULINE ORDINAL INDICATOR

0x7B U+00BB “ 0xC2BB RIGHT−POINTING DOUBLE ANGLE QUOTATION MARK

0x7C U+00BC ¼ 0xC2BC VULGAR FRACTION ONE QUARTER

0x7D U+00BD ½ 0xC2BD VULGAR FRACTION ONE HALF

0x7E U+00BE ¾ 0xC2BE VULGAR FRACTION THREE QUARTERS

0x7F U+00BF ¿ 0xC2BF INVERTED QUESTION MARK

0x80 U+00C0 À 0xC380 LATIN CAPITAL LETTER A WITH GRAVE

0x81 U+00C1 Á 0xC381 LATIN CAPITAL LETTER A WITH ACUTE

0x82 U+00C2 Â 0xC382 LATIN CAPITAL LETTER A WITH CIRCUMFLEX

0x83 U+00C3 Ã 0xC383 LATIN CAPITAL LETTER A WITH TILDE

0x84 U+00C4 Ä 0xC384 LATIN CAPITAL LETTER A WITH DIAERESIS

0x85 U+00C5 Å 0xC385 LATIN CAPITAL LETTER A WITH RING ABOVE

0x86 U+00C6 Æ 0xC386 LATIN CAPITAL LETTER AE

0x87 U+00C7 Ç 0xC387 LATIN CAPITAL LETTER C WITH CEDILLA

0x88 U+00C8 È 0xC388 LATIN CAPITAL LETTER E WITH GRAVE

0x89 U+00C9 É 0xC389 LATIN CAPITAL LETTER E WITH ACUTE

0x8A U+00CA Ê 0xC38A LATIN CAPITAL LETTER E WITH CIRCUMFLEX

0x8B U+00CB Ë 0xC38B LATIN CAPITAL LETTER E WITH DIAERESIS

0x8C U+00CC Ì 0xC38C LATIN CAPITAL LETTER I WITH GRAVE

0x8D U+00CD Í 0xC38D LATIN CAPITAL LETTER I WITH ACUTE

0x8E U+00CE Î 0xC38E LATIN CAPITAL LETTER I WITH CIRCUMFLEX

0x8F U+00CF Ï 0xC38F LATIN CAPITAL LETTER I WITH DIAERESIS

0x90 U+00D0 Ð 0xC390 LATIN CAPITAL LETTER ETH

0x91 U+00D1 Ñ 0xC391 LATIN CAPITAL LETTER N WITH TILDE

0x92 U+00D2 Ò 0xC392 LATIN CAPITAL LETTER O WITH GRAVE

0x93 U+00D3 Ó 0xC393 LATIN CAPITAL LETTER O WITH ACUTE

0x94 U+00D4 Ô 0xC394 LATIN CAPITAL LETTER O WITH CIRCUMFLEX

http://www.onsemi.com/

AND9930/D

www.onsemi.com
126

Table 281. CHARACTER ROM

UTF−8
Unicode code

Index (hex) Name(hex)Char
Unicode code

Point

0x95 U+00D5 Õ 0xC395 LATIN CAPITAL LETTER O WITH TILDE

0x96 U+00D6 Ö 0xC396 LATIN CAPITAL LETTER O WITH DIAERESIS

0x97 U+00D7 × 0xC397 MULTIPLICATION SIGN

0x98 U+00D8 Ø 0xC398 LATIN CAPITAL LETTER O WITH STROKE

0x99 U+00D9 Ù 0xC399 LATIN CAPITAL LETTER U WITH GRAVE

0x9A U+00DA Ú 0xC39A LATIN CAPITAL LETTER U WITH ACUTE

0x9B U+00DB Û 0xC39B LATIN CAPITAL LETTER U WITH CIRCUMFLEX

0x9C U+00DC Ü 0xC39C LATIN CAPITAL LETTER U WITH DIAERESIS

0x9D U+00DD Ý 0xC39D LATIN CAPITAL LETTER Y WITH ACUTE

0x9E U+00DE Þ 0xC39E LATIN CAPITAL LETTER THORN

0x9F U+00DF ß 0xC39F LATIN SMALL LETTER SHARP S

0xA0 U+00E0 à 0xC3A0 LATIN SMALL LETTER A WITH GRAVE

0xA1 U+00E1 á 0xC3A1 LATIN SMALL LETTER A WITH ACUTE

0xA2 U+00E2 â 0xC3A2 LATIN SMALL LETTER A WITH CIRCUMFLEX

0xA3 U+00E3 ã 0xC3A3 LATIN SMALL LETTER A WITH TILDE

0xA4 U+00E4 ä 0xC3A4 LATIN SMALL LETTER A WITH DIAERESIS

0xA5 U+00E5 å 0xC3A5 LATIN SMALL LETTER A WITH RING ABOVE

0xA6 U+00E6 æ 0xC3A6 LATIN SMALL LETTER AE

0xA7 U+00E7 ç 0xC3A7 LATIN SMALL LETTER C WITH CEDILLA

0xA8 U+00E8 è 0xC3A8 LATIN SMALL LETTER E WITH GRAVE

0xA9 U+00E9 é 0xC3A9 LATIN SMALL LETTER E WITH ACUTE

0xAA U+00EA ê 0xC3AA LATIN SMALL LETTER E WITH CIRCUMFLEX

0xAB U+00EB ë 0xC3AB LATIN SMALL LETTER E WITH DIAERESIS

0xAC U+00EC ì 0xC3AC LATIN SMALL LETTER I WITH GRAVE

0xAD U+00ED í 0xC3AD LATIN SMALL LETTER I WITH ACUTE

0xAE U+00EE î 0xC3AE LATIN SMALL LETTER I WITH CIRCUMFLEX

0xAF U+00EF ï 0xC3AF LATIN SMALL LETTER I WITH DIAERESIS

0xB0 U+00F0 ð 0xcC3B0 LATIN SMALL LETTER ETH

0xB1 U+00F1 ñ 0xC3B1 LATIN SMALL LETTER N WITH TILDE

0xB2 U+00F2 ò 0xC3B2 LATIN SMALL LETTER O WITH GRAVE

0xB3 U+00F3 ó 0xC3B3 LATIN SMALL LETTER O WITH ACUTE

0xB4 U+00F4 ô 0xC3B4 LATIN SMALL LETTER O WITH CIRCUMFLEX

0xB5 U+00F5 õ 0xC3B5 LATIN SMALL LETTER O WITH TILDE

0xB6 U+00F6 ö 0xC3B6 LATIN SMALL LETTER O WITH DIAERESIS

0xB7 U+00F7 ÷ 0xC3B7 DIVISION SIGN

0xB8 U+00F8 ø 0xC3B8 LATIN SMALL LETTER O WITH STROKE

0xB9 U+00F9 ù 0xC3B9 LATIN SMALL LETTER U WITH GRAVE

0xBA U+00FA ú 0xC3BA LATIN SMALL LETTER U WITH ACUTE

http://www.onsemi.com/

AND9930/D

www.onsemi.com
127

Table 281. CHARACTER ROM

UTF−8
Unicode code

Index (hex) Name(hex)Char
Unicode code

Point

0xBB U+00FB û 0xC3BB LATIN SMALL LETTER U WITH CIRCUMFLEX

0xBC U+00FC ü 0xC3BC LATIN SMALL LETTER U WITH DIAERESIS

0xBD U+00FD ý 0xC3BD LATIN SMALL LETTER Y WITH ACUTE

0xBE U+00FE þ 0xC3BE LATIN SMALL LETTER THORN

0xBF U+00FF ÿ 0xC3BF LATIN SMALL LETTER Y WITH DIAERESIS

http://www.onsemi.com/

AND9930/D

www.onsemi.com
128

APPENDIX H: CHANGES SINCE AP0100 REV 2
The AS0148AT is based on the AP0100AT. This section

describes the changes made for AS0148AT (relative to
AP0100AT).

HOST COMMAND CHANGES
The AS0148AT host command set has a number of

changes compared to the AP0100AT set - the full
AP0100AT command set is summarized in Table 12.

Table 282. AS0148AT Host Commands vs. AP0100AAT

AP0100 Command Code Description
AP020X

Implementation

SYSMGR_SET_STATE 0x8100 Set the system state Supported

SYSMGR_GET_STATE 0x8101 Get the system state Supported

SYSMGR_CONFIG_POWER_MGMT 0x8102 Configure power management Supported

OVRL_ENABLE 0x8200 Enable overlay Supported

OVRL_GET_STATE 0x8201 Get overlay state Supported

OVRL_SET_CALIBRATION 0x8202 Set bitmap/string calibration offset Supported

OVRL_SET_BITMAP_PROP 0x8203 Set bitmap property Supported

OVRL_GET_BITMAP_PROP 0x8204 Get bitmap property Supported

OVRL_SET_STRING_PROP 0x8205 Set string property Supported

OVRL_LOAD_BUFFER 0x8206 Load buffer (from NVM) Supported

OVRL_LOAD_STATUS 0x8207 Status of last load Supported

OVRL_WRITE_BUFFER 0x8208 Write to buffer (via CCI) Supported

OVRL_READ_BUFFER 0x8209 Read buffer (via CCI) Supported

OVRL_ENABLE_LAYER 0x820A Enable bitmap layer Supported

OVRL_GET_LAYER_STATUS 0x820B Get status of bitmap layer Supported

OVRL_SET_STRING 0x820C Set string Supported

OVRL_GET_STRING 0x820D Get string Supported

OVRL_LOAD_STRING 0x820E Load string (from NVM) Supported

STE_CONFIG 0x8310 Configure (from ROM) Supported

STE_LOAD_CONFIG 0x8311 Load configuration (from NVM) Supported

STE_LOAD_STATUS 0x8312 Status of last load Supported

STE_WRITE_CONFIG 0x8313 Write configuration (via CCI) Supported

GPIO_SET_PROP 0x8400 Set GPIO pin/group property Supported

GPIO_GET_PROP 0x8401 Get GPIO pin/group property Supported

GPIO_SET_STATE 0x8402 Set GPIO pin/group state Supported

GPIO_GET_STATE 0x8403 Get GPIO pin/group state Supported

GPIO_SET_GPI_ASSOC 0x8404 Set GPI association Supported

GPIO_GET_GPI_ASSOC 0x8405 Get GPI association Supported

FLASHMGR_GET_LOCK 0x8500 Get Flash Manager lock Supported

FLASHMGR_LOCK_STATUS 0x8501 Status of Flash Manager lock Supported

FLASHMGR_RELEASE_LOCK 0x8502 Release Flash Manager lock Supported

FLASHMGR_CONFIG 0x8503 Configure Flash Manager Supported

FLASHMGR_READ 0x8504 Read (from Flash) Supported

FLASHMGR_WRITE 0x8505 Write (to Flash) Supported

http://www.onsemi.com/

AND9930/D

www.onsemi.com
129

Table 282. AS0148AT Host Commands vs. AP0100AAT

AP0100 Command
AP020X

ImplementationDescriptionCode

FLASHMGR_ERASE_BLOCK 0x8506 Erase (Flash) block Supported

FLASHMGR_ERASE_DEVICE 0x8507 Erase (Flash) device Supported

FLASHMGR_QUERY_DEVICE 0x8508 Query manufacturer and device identifiers Supported

FLASHMGR_STATUS 0x8509 Status of last Flash operation Supported

FLASHMGR_CONFIG_DEVICE 0x850A Configure the SPI device attached Supported

SEQ_REFRESH 0x8606 Refresh Sequencer Supported

SEQ_REFRESH_STATUS 0x8607 Retrieve status of last refresh request Supported

PATCHLDR_LOAD_PATCH 0x8700 Load patch (from Flash) Supported

PATCHLDR_STATUS 0x8701 Status of last load operation Supported

PATCHLDR_APPLY_PATCH 0x8702 Apply patch Supported

PATCHLDR_RESERVE_RAM 0x8706 Allocate RAM to contain patch Supported

MISC_INVOKE_COMMAND_SEQ 0x8900 Invoke a command sequence (stored in Flash Supported

MISC_CONFIG_CMDSEQ_PROC 0x8901 Configure the Command Sequence Processor Supported

MISC_WAIT_FOR_EVENT 0x8902 Wait for a System Event Supported

CALIB_STATS_CONTROL 0x8B00 Configure and control the Calibration Statistics
engine

Supported

CALIB_STATS_READ 0x8B01 Retrieve results from the Calibration Statistics
engine

Supported

EVENT_MON_SET_ASSOCIATION 0x8C00 Set Event Monitor association Supported

EVENT_MON_GET_ASSOCIATION 0x8C01 Retrieve details of an Event Monitor association Supported

CCIMGR_GET_LOCK 0x8D00 Obtain the CCI lock Supported

CCIMGR_LOCK_STATUS 0x8D01 Status of CCI lock request Supported

CCIMGR_RELEASE_LOCK 0x8D02 Release the CCI lock Supported

CCIMGR_CONFIG 0x8D03 Configure the CCI (master) bus Supported

CCIMGR_SET_DEVICE 0x8D04 Configure the CCI slave address Supported

CCIMGR_READ 0x8D05 Read bytes from the CCI bus Supported

CCIMGR_WRITE 0x8D06 Write bytes to the CCI bus Supported

CCIMGR_WRITE_BITFIELD 0x8D07 Read−modify−write to a 16−bit CCI slave register Supported

CCIMGR_STATUS 0x8D08 Status of current CCI transaction Supported

SENSOR_MGR_DISCOVER_SENSOR 0x8E00 Discover sensor attached to the AP020X Supported

SENSOR_MGR_INITIALIZE_SENSOR 0x8E01 Initialize sensor attached to the AP020X Supported

http://www.onsemi.com/

AND9930/D

www.onsemi.com
130

OVERLAY MANAGER
The Overlay Manager host command interface has been

enhanced to take advantage of the increased capabilities of
the AS0148AT:
 Increased the number of overlay layers (from 8 to 12)

with 2 each fixed arc and line layers
 Added arc and line drawing commands, with 2 line

layers (7, 8) and 2 arc layers (9, 10)
 Each overlay buffer has about 4x the capacity (from 4

kbytes to almost 16 kbytes (16336))
 Each overlay buffer can support more colors (from 16

to 32), so there are more properties and IDs
 The character overlay supports 4 individual strings of

64 characters each
 The overlay character ROM is increased to 192

characters
 New user−defined character RAM provided for up to

64 characters

SYSTEM MANAGER
The state machine of the system configuration phase has

been changed.
In AP0100AT, the System Manager checks for Virtual

Flash records in OTPM first, and then detects an SPI NVM
device and checks for records in it.

In AS0148AT, the System Manager detects an SPI NVM
device first. If an SPI NVM device is not detected or it has

no valid table of contents record, the System Manager
decides whether auto−configuration should be applied or not
based on the state of the SPI_DI pin. Then, the System
Manager checks for Virtual Flash records in OTPM. If the
OTPM does not have valid Virtual Flash records, the System
Manager either applies or skips auto−configuration based on
the decision made before checking for OTPM Virtual Flash
records.

The System Manager detects if records in OTPM or an SPI
NVM device attempts to change the
SYSMGR_CONFIG_MODE variable value to force the
System Manager to switch to the
SYS_STATE_FLASH_CONFIG or
SYS_STATE_OTPM_CONFIG states. The System
Manager blocks that operation and switches to
SYS_STATE_IDLE state instead.

The intention is to make the configuration phase
deterministic so that loops cannot be created. Precedence is
given first to an SPI NVM device, then to OTPM Virtual
Flash. The System Manager will not use configuration
information from both sources. Any error (invalid data or
I/O errors) encountered while in the
SYS_STATE_FLASH_CONFIG or
SYS_STATE_OTPM_CONFIG states will terminate the
configuration phase and the system will be placed in the
SYS_STATE_IDLE state.

http://www.onsemi.com/

AND9930/D

www.onsemi.com
131

APPENDIX I: NETWORK ACCESS HOST
COMMAND ID CODES

This section describes how network access host command
ID codes are encoded and provides a comprehensive list of
valid ID codes.

The ID of the network access host command is a 16−bit
value encoded as follows:

Table 283.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 PR PR AT AT 0 ST ST ST 0 SZ SZ RW

The various bit fields shown above are described in detail
in the following table. Note that any bit field value not shown
is invalid; for example, the SZ bit field cannot be 3.

Table 284. BIT FIELDS

Field Name Field Description Field Value Field Value Meaning

PR Processor 1 ISP Address Space

AT Access Type 0 REG − Register access

1 VAR − Firmware Variable access

2 MEM −− Memory access; ST field selects the memory space

3 RAW − ”Raw” access (i.e. XDMA registers not managed)

‘ST Sub Type 0 The only valid value for REG, VAR, and RAW access types

For ISP 4 Overlay Registers & Memory, Bank 0

(PR = 1) 5 Overlay Registers & Memory, Bank 1

6 Overlay Registers & Memory, Bank 2

7 Overlay Registers & Memory, Bank 3

SZ Item Size 0 Each item is 8 bits

1 Each item is 16 bits

2 Each item is 32 bits

RW Read/Write 0 Write (NET_SET_* host command)

1 Read (NET_GET_* host command)

The following table shows the legal command ID values
for all network access host commands.

Table 285. LEGAL COMMAND AND ID VALUES FOR NETWORK ACCESS HOST COMMANDS

ID Command Name Description

0xC402 NET_SET_REG_16 Write Registers, 16 bits/item

0xC403 NET_GET_REG_16 Read Registers, 16 bits/item

0xC500 NET_SET_VAR_8 Write Firmware Variables, 8 bits/item

0xC501 NET_GET_VAR_8 Read Firmware Variables, 8 bits/item

0xC502 NET_SET_VAR_16 Write Firmware Variables, 16 bits/item

0xC503 NET_GET_VAR_16 Read Firmware Variables, 16 bits/item

0xC504 NET_SET_VAR_32 Write Firmware Variables, 32 bits/item

0xC505 NET_GET_VAR_32 Read Firmware Variables, 32 bits/item

http://www.onsemi.com/

AND9930/D

www.onsemi.com
132

Table 285. LEGAL COMMAND AND ID VALUES FOR NETWORK ACCESS HOST COMMANDS

ID DescriptionCommand Name

0xC640 NET_SET_OVL0_8 Write Overlay Memory, Bank 0, 8 bits/item

0xC641 NET_GET_OVL0_8 Read Overlay Memory, Bank 0, 8 bits/item

0xC642 NET_SET_OVL0_16 Write Overlay Memory, Bank 0, 16 bits/item

0xC643 NET_GET_OVL0_16 Read Overlay Memory, Bank 0, 16 bits/item

0xC644 NET_SET_OVL0_32 Write Overlay Memory, Bank 0, 32 bits/item

0xC645 NET_GET_OVL0_32 Read Overlay Memory, Bank 0, 32 bits/item

0xC650 NET_SET_OVL1_8 Write Overlay Memory, Bank 0, 8 bits/item

0xC651 NET_GET_OVL1_8 Read Overlay Memory, Bank 0, 8 bits/item

0xC652 NET_SET_OVL1_16 Write Overlay Memory, Bank 0, 16 bits/item

0xC653 NET_GET_OVL1_16 Read Overlay Memory, Bank 0, 16 bits/item

0xC654 NET_SET_OVL1_32 Write Overlay Memory, Bank 0, 32 bits/item

0xC655 NET_GET_OVL1_32 Read Overlay Memory, Bank 0, 32 bits/item

0xC660 NET_SET_OVL2_8 Write Overlay Memory, Bank 0, 8 bits/item

0xC661 NET_GET_OVL2_8 Read Overlay Memory, Bank 0, 8 bits/item

0xC662 NET_SET_OVL2_16 Write Overlay Memory, Bank 0, 16 bits/item

0xC663 NET_GET_OVL2_16 Read Overlay Memory, Bank 0, 16 bits/item

0xC664 NET_SET_OVL2_32 Write Overlay Memory, Bank 0, 32 bits/item

0xC665 NET_GET_OVL2_32 Read Overlay Memory, Bank 0, 32 bits/item

0xC670 NET_SET_OVL3_8 Write Overlay Memory, Bank 0, 8 bits/item

0xC671 NET_GET_OVL3_8 Read Overlay Memory, Bank 0, 8 bits/item

0xC672 NET_SET_OVL3_16 Write Overlay Memory, Bank 0, 16 bits/item

0xC673 NET_GET_OVL3_16 Read Overlay Memory, Bank 0, 16 bits/item

0xC674 NET_SET_OVL3_32 Write Overlay Memory, Bank 0, 32 bits/item

0xC675 NET_GET_OVL3_32 Read Overlay Memory, Bank 0, 32 bits/item

0xC700 NET_SET_RAW_8 Write generic reg/var/mem, 8 bits/item

0xC701 NET_GET_RAW_8 Read generic reg/var/mem, 8 bits/item

0xC702 NET_SET_RAW_16 Write generic reg/var/mem, 16 bits/item

0xC703 NET_GET_RAW_16 Read generic reg/var/mem, 16 bits/item

0xC704 NET_SET_RAW_32 Write generic reg/var/mem, 32 bits/item

0xC705 NET_GET_RAW_32 Read generic reg/var/mem, 32 bits/item

http://www.onsemi.com/

AND9930/D

www.onsemi.com
133

APPENDIX J: MAXIMUM ITEM COUNT CODES
FOR NETWORK ACCESS HOST COMMANDS

The maximum size of the block of items in a network
access host command depends upon:
 The size of each item − 8, 16, or 32 bytes each

 The direction of the access − NET_SET_* commands
use 4 more bytes of the available data space than
NET_GET_* commands

 The originator of the host command:
 CCI−based commands have only 256 bytes of

parameter pool available

 NVM records have 1024 bytes available
 Ethernet commands are limited by the maximum

transmission unit size (1500 bytes) less overhead
used by the protocol used. For example, the onsemi
Camera Control protocol over IPv4 uses 20 bytes for
IPv4 header + 8 bytes for UDP header + 8 bytes for
the onsemi Camera Control protocol header.

The following table lists maximum item counts for the
factors stated above:

Table 286. MAXIMUM ITEM COUNTS

Access Type Item Size
Maximum Item Count Over

CCI
Maximum Item Count in NVM

records
Maximum Item Count Over

ACCP Protocol

SET (Write) 8 bits 252 1020 1460

GET (Read) 8 bits 256 1024 1464

SET (Write) 16 bits 126 510 730

GET (Read) 16 bits 128 512 732

SET (Write) 32 bits 63 255 365

GET (Read) 32 bits 64 256 366

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative

http://www.onsemi.com/
https://www.onsemi.com/site/pdf/Patent-Marking.pdf

