
To learn more about onsemi™, please visit our website at
www.onsemi.com

ON Semiconductor

Is Now

onsemi and       and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

© Semiconductor Components Industries, LLC, 2018

March, 2020 − Rev. 1
1 Publication Order Number:

AND9826/D

LV8702VSLDGEVK

Stepper Motor Module
Solution Kit

This Application Note provides supporting information
for the LV8702VSLDGEVK Motor Driver Solution Kit.

KIT OVERVIEW
When developing a motor control application system

using any motor driver product provided by
ON Semiconductor, it is first necessary to design the
hardware after understanding the specifications of the motor
driver product. And then proceed to generating operation
control signals (for the rotating direction, speed, angle, etc.)
that will be inputted into the driver IC. Given that operation
control signals like these are generally generated with the
use of a microcomputer, it is necessary to develop software
for the microcomputer in addition to the hardware design
mentioned above.

This kit provides an API function library for motor driver
control designed to control the ON Semiconductor motor
driver product (LV8702V) via the Arduino Micro
microcomputer. It also provides a dedicated GUI for
controlling motors connected to the Arduino Micro
microcomputer that embedded with the API library from a

computer via USB communication. This means that it is
possible to easily tune and otherwise debug motor control
sequences and operation parameters without developing
motor control software for the Arduino Micro.

In addition, this GUI also has an automatic code
generation feature. It outputs control software (source code)
to achieve debug control sequences and operation
parameters on the Arduino Micro microcomputer in a
format (sketch) in which it can be compiled with the Arduino
IDE.

As a result, the use of this kit allows users to easily develop
a prototype of motor control application system without
special knowledge of the specifications of the motor driver
on the software development using the API functions. It also
reduces the development period and significantly lowers
costs.

Motor Driver IC
spec check

MCU Motor
Control S/W
development

Sequence design

Sequence debug

Debug with GUI

Finalized

Auto Code Generation

Finalized

Debugging by
changing the code

Easy to setting
parameters and
sequence check
without coding

General Design Flow Design with Motor Driver
Module Solution Kit

Timing
adjustment

No need!

Motor control
MCU S/W

Figure 1. General Development Process Flow and Development Process Flow Using This Kit

www.onsemi.com

APPLICATION NOTE

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
2

GUI DEBUG MODE AND STANDALONE
DEVELOPMENT MODES

This kit is presumed to be used in a total of three different
debug and development modes: the GUI debug mode, the
standalone development mode using the automatic code
generation feature, and the standalone development mode
using an original sketch.

GUI Debug Mode
In the GUI debug mode, the user will operate the

dedicated GUI installed on the computer to change motor
control sequences and operation parameters for the
LV8702V. The user can tune the parameters while actually
operating the motor.

It also has an automatic code generation feature, which
outputs a sketch (an .ino file) that can be compiled and
written into the Arduino Micro that reflects the motor
control sequences and operation parameters set by the user
by operating the GUI.

To use this mode, it is necessary to write firmware
generated by using Arduino IDE into the Arduino MICRO.
The user must compile the sketch for the GUI
(LV8702_Program. ino) with motor driver API Functions
library (LV8702_Lib.cpp/h) and TimerOne library which is
separately downloaded off the Internet into the Arduino
MICRO to generate the firmware by Arduino IDE.

Figure 2. Outline of the GUI Debug Mode

Standalone Development Modes
In the standalone development modes, the user adjusts the

timing of the motor drive and adds the user’s original source
code based on the automatically generated sketch in the GUI

debug mode and writes them into the Arduino Micro instead
of the sketch that is exclusive for the GUI to facilitate
standalone Stepper motor driving using this kit.

Figure 3 provides a graphical representation of this mode.

Figure 3. Standalone Development Mode Using Automatic Generation Feature

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
3

It is also possible to develop sketches from scratch with
the API function library instead of using the automatic code
generation feature. With advanced knowledge of

programming, it is possible to develop a more complicated
and sophisticated motor control application.

Refer to Figure 4.

Figure 4. Standalone Development Mode Using Original Sketch

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
4

PROGRAMMING GUIDE

ARDUINO SKETCH

Sketch Overview
A sketch is a program written in Arduino language used

for the Arduino. A sketch is a program, or the unit of code
that is compiled, uploaded to and run on an Arduino board.
The Arduino language is based on the C/C++ languages, and
it supports the full structure of the C language and some
features of the C++ language.

For details and help regarding Arduino commands, please
refer to: https://www.arduino.cc/en/Tutorial/Sketch

setup() and loop()
If you create a new sketch on the Arduino IDE, setup() and

loop() will be automatically inserted as below.

setup() is a function that is called only once after the
Arduino Board is powered on or reset. This function mainly
conducts initial settings including preparation of the
libraries to be used, initialization of variables, and
initialization of pin modes.

loop() is, as its name suggests, a function that is executed
repeatedly after setup() function executed. It contains
programs which should be run many times

Overview of Motor Driver Library
The motor driver library (LV8702_APILibrary) provides

a library for controlling a Stepper motor with the use of
ON Semiconductor’s LV8702V motor driver from the
Arduino Micro. Stepper motor control using the LV8702V
is easily achieved by including this API library via the
Arduino IDE and calling the API functions suited to the
purposes in the sketch

Table 1. LIST OF MOTOR DRIVER LIBRARY FILES

File Name Description

1 keywords.txt Keyword file (sets highlighted
words in sketches)

2 LV8702_Lib.cpp Source file

3 LV8702_Lib.h Header file

Using the Stepper Motor Driver API Library
For instructions for the inclusion of the library, refer to the

Quick Start Guide.
To use the stepper motor control API library in the

Arduino, include the header file of the stepper motor control
API library at the beginning of the sketch, as explained
below, and instantiate the class to be used.

To use the GUI tool, it is necessary to separately call the
serial communication API. For details, refer to API Function
Specifications. The following shows a sketch that includes
the stepper motor control API library.

Inclusion of the motor driver library

#include <LV8702_Lib.h>
// Importing a header file for using the API function for LV8702V
#include <TimerOne.h>
// Importing a header file for using the TimerOne library
Lib_LV8702V Lib // Instantiating LV8702V class (Note 1)
void setup(){ // Function called at the start (Refer to setup() and loop())
}
void loop(){ // Function executed repeatedly (Refer to setup() and loop())
}

1. In this example, the instatntiation was conducted with the name of Lib. The addition of ’Lib.’ as prefix makes it possible to call the API functions
in the Lib_LV8702V class.
e.g. Lib.initLib();

Compiling and Writing a Sketch into Arduino
For the steps for compiling and writing a sketch (Arduino

program), refer to Compiling an Arduino Program and
Writing into Arduino in Quick Start Guide.

http://www.onsemi.com/
https://www.arduino.cc/en/Tutorial/Sketch

LV8702VSLDGEVK

www.onsemi.com
5

CODING A PROGRAM (SKETCH)

Automatic Code Generation
The following explains the functions which are written by

the automatic code generation at the timing of sketch output.

An generated sample sketch is used as an example for
explanation.

For details of the API functions of the motor driver library
called by the GUI debug operation, refer to section API
Function Specifications.

A sample of automatically generated code

#include <LV8702_Lib.h> // Refer to Using the Stepper Motor Driver API Library
#include <TimerOne.h> // Refer to Using the Stepper Motor Driver API Library
Lib_LV8702V Lib; // Refer to Using the Stepper Motor Driver API Library
void setup(){ // Refer to setup() and loo()

Serial.begin(19200); // Set the baud rate at 19200 and open the port (Note 2)

Lib.initLib(); // Intialize the Arduino parameters and registers

Timer1.initialize(50); // Timer1 is initilalized with 50us interrupt period
Timer1.attachInterrupt(interrupt); // Attached interrupt handler routine for timer
delay(5000); // Interval time [ms] after start−up of the Arduino (Note 3)

Lib.setChipEnable(1);
delay(0); // Interval time [ms] after execution of an API function
Lib.setStepAngle(7.5);
delay(0); // Interval time [ms] after execution of an API function
Lib.motorRotationStep(100, 100.0, 1, 1);
delay(0); // Motor driving time [ms] (Note 4)
Lib.motorRotationStop();
delay(0); // Interval time [ms] after execution of an API function
Lib.motorRotationFree();
delay(0); // Interval time [ms] after execution of an API function

}
void interrupt(){ // Interrupt handler routine that is called when timer is fired

Timer1.initialize(Lib.timerFire());
}
void loop(){ // Refer to Sketch Overview
}

2. This function is required in the case of using serial communication.
If not using serial communication, you can remove this without affection for the motor operation.

3. The default value of 5000 ms (5 sec) is set.
4. delay() after the start of the motor means the motor driving time.

The default value of 0 is set. Change the value as required.

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
6

Using an Automatically Generated Sketch
An automatically generated sketch is so simply structured

that it is easy for programming beginners to use.
Customization will turn it into a more practical program.
This sections sketch is representative of the functionality of

the Arduino setup part and motor driver part which can be
called using setup() and loop(). An example of this
customization is shown in the sketch generated in Automatic
Code Generation

#include <LV8702_Lib.h>
#include <TimerOne.h>
Lib_LV8702V Lib;
void setup(){

motorSetup();// The functionalized initial settings of the Arduino are called with setup()
}
void interrupt(){

Timer1.initialize(Lib.timerFire());
}
void loop(){

motorControl();// The functionalized motor drive part is called with loop().
}
// The initial settings of the Arduino are functionalized. //
void motorSetup(){

Serial.begin(19200);
Lib.initLib();
Timer1.initialize(50);
Timer1.attachInterrupt(interrupt);
delay(5000);

}
// The motor drive part is functionalized //
void motorControl(){

Lib.setChipEnable(1);
delay(0);
Lib.setStepAngle(7.5);
delay(0);
Lib.motorRotationStep(100, 100.0, 1, 1);
delay(5000); // The delay value is changed to 5000 and the motor 1 drive time is set to 5000 [ms].

Example of Application
Overview

In this example, we will develop an application to use the
stepper motor (MDP−35A) provided with the kit as a winch
(hoist) of a crane.

Figure 5. FA Crane and a Winch (Hoist)

Specifications
• Joystick controls hoisting, lowering, and stopping of the

winch.
• Button C hoisting 100 rpm keep hoisting while

button being pressed
• Button Z lowering 100 rpm keep lowering

while button being pressed
• Button C + Z Stop

• The joystick does polling with the 200 ms monitoring
period by I2C polling.

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
7

Items required
• Module Solution Kit MDP−35A in this kit is

also used
• Bobbin for sewing machines Used as a part of the

winch (platstic
recommended)

• Screw to fix the bobbin Around the size of 2�
2 mm

• String for the winch String length is arbitrary.

• Hook for lifting Recommended to use
adequate weight stability

• Toy crane Not essential to program the kit,
but more fun to play with!

• Joystick Control the winch
(Example: Wii Nunchuk

https://www.nintendo.co.jp/wii/controllers/index.html#
nunchuk)

• Joystick adaptor Suport joystick onnection to
Base Board
(Example: WiiChuck adaptor

https://www.sparkfun.com/products/retired/9281)

Block Diagram

Figure 6. Block Diagram

Connection
• Motor

Connect to Base Board as explained in the Quick Start
Guide.

• Joystick
Connector side

Joystick adaptor Joystick connector

If a joystick adapter is not available, disassemble the
joystick connector and wire directly, if desired.

Arduino Micro side

MISO SCLK3V3

Positions of 3V3, MISO, SCLK connections
Though wiring needs to be drawn for 3.3 V (3V3) from

Base Board, GND can be taken from J2.
Connect the joystick adaptor to Arduino Micro
♦ Adaptor (+) → Arduino Micro (3V3)
♦ Adaptor (−) → Arduino Micro (GND)
♦ Adaptor (d) → Arduino Micro (MISO)
♦ Adaptor (c) → Arduino Micro (SCLK)

http://www.onsemi.com/
https://www.nintendo.co.jp/wii/controllers/index.html#nunchuk
https://www.nintendo.co.jp/wii/controllers/index.html#nunchuk
https://www.sparkfun.com/products/retired/9281

LV8702VSLDGEVK

www.onsemi.com
8

• Bobbin
Fix the bobbin to the shaft of the stepper motor, then
connect string to it.

Hook

A hole with diameter of ∅1.5

Customizing a bobbin, string and hook
The motor shaft is 6∅ in diameter, the hole of a bubbin
is 6 to 6.2. Drill a hole with the diametor of ∅1.5 on the
bobbin run the string through the hole and tie a knot in
the string to prevent the string from pulling back
through the bobbin. See figure above

Flat part of the shaft

Screw

Fixing the bobbin

Align the hole drilled in the bobbin with the flat part of
the motor shaft. Insert s 2∅ screw and tighten it to fix
the bobbin securely to the motor shaft.

Make the Base Code Using the GUI
Before coding, here we use the GUI to look up the API that

corresponds to the operation of the motor.

Step 1: Write the Firmware:
Write the firmware to the Arduino following the steps

explained in Quick Start Guide. Double−click the sketch
LV8702_Program.ino to launch the Arduino IDE and push
“→” Button or execute [Sketch] → [Upload]. Make sure that
the COM port to which the Arduino is connected is selected
from [Tools] > [Port].

Step 2: Debug by the GUI:
Launch the GUI, select the COM port to which the

Arduino is connected from the Serial Port Settings, and click
Connect. The LV8702 tab opens automatically.

Then set the GUI parameters as follows:
• Excitation Half Step (Full−torque)

• Direction CW

• Step Angle 7.5 (Optimize for the motor
used, press Set button to
enable the set value)

• Transfer Unit Seconds

• Transfer Step 0 (Infinity)

• Chip Enable/Disable Operation

• Power Supply/Motor Spec Optimize for the power
supply and the motor

After setting these parameters, change Motor Speed to
300 step/s and press Start.

Find the right values for Motor Speed and check the
parameters when the rotational directions (CW, CCW) is
switched through this debugging process. Here we tried
300 step/sec at first and found that’s too fast. Therefore, we
kept trying motor rotations while decresing the speed (you
can see this process in the sample sketch in the next step).

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
9

Step 3: Automatic Code Generation by the GUI:
Use code generation function to examine the API

functions which were executed during the operation with the
GUI.

A sample sketch from automatic code generation

#include <LV8702_Lib.h>
#include
<TimerOne.h>
Lib_LV8702V Lib;
void setup()
{

Serial.begin(19200);
Lib.initLib();
Timer1.initialize(50);
Timer1.attachInterrupt(interrupt);
delay(1000);
Lib.setChipEnable(1);
delay(0);//0msec
Lib.setStepAngle(7.5);
delay(0);//0msec
Lib.motorRotationTime(300, 0, 0, 1); // CW
delay(0);//0msec
Lib.motorRotationStop();
delay(0);//0msec
Lib.motorRotationTime(200, 0, 1, 1); // CCW
delay(0);//0msec
Lib.motorRotationStop();
delay(0);//0msec
Lib.motorRotationTime(100, 0, 1, 1); // CCW
delay(0);//0msec
Lib.motorRotationStop();
delay(0);//0msec
Lib.motorRotationTime(100, 0, 0, 1); // CW
delay(0);//0msec
Lib.motorRotationStop();
delay(0);//0msec

}
void interrupt()
{

Timer1.initialize(Lib.timerFire());
}
void loop()
}

Based on this code, we can start to develop the specific
application code.

Application Development
Here we begin to write the actual code to control a stepper

motor with a joystick.
In this section, we use WiiChuck

(https://www.arduinolibraries.info/libraries/wii−chuck)
library to retrieve data from a joystick (Wii Nunchuk).

Also, because LV8702V module use many terminals of
the Arduino, the I2C terminals of the Arduino are already
ocupied. Use SoftwareWire

(https://github.com/Testato/SoftwareWire) library that
allows I2C slaves to be accessed by controlling
general−purpose GPIO terminals from software.

NOTE: You can use the WiiChuck and SoftwareWire
libraries by copying them under
Document¥Arduino¥libraries.

Step 1 Modification of WiiChuck Library:
The WiiChuck library is coded to use I2C hardware of the

Arduino. Modify this to use SoftwareWire by Replaceing
#include <Wire.h> in the beginning of Accessory.cpp in
WiiChuck library with the red portion shown below.

Accessory.cpp

#include ”Accessory.h”

#include <SoftwareWire.h>
#define MISO 14 //!< Arduino micro MISO pin number define
#define SCLK 15 //!< Arduino micro SCK pin number define
SoftwareWire _i2c(MISO, SCLK, false, true);

Accessory::Accessory() {

http://www.onsemi.com/
https://www.arduinolibraries.info/libraries/wii-chuck
https://github.com/Testato/SoftwareWire

LV8702VSLDGEVK

www.onsemi.com
10

Next replace all instances of “Wire.” in Accessory.cpp to
“_i2c.” which is the name of SoftwareWire instance which
was instanciated in the red portion above. The WiiChuck
library modification is now complete.

STEP 2 Code Example for the Application:
Now we actually start coding. WiiChuck significantly

simplifies this effort.

#include <LV8702_Lib.h>
#include <TimerOne.h>
#include <WiiChuck.h> // WiiChuck library header
Accessory nunchuck1; // WiiChuck instantiation Lib_LV8702V Lib;
void setup()
{

Serial.begin(19200);
Lib.initLib(); Timer1.initialize(50);
Timer1.attachInterrupt(interrupt);
nunchuck1.begin(); // WiiChuck Initialization
if (nunchuck1.type == Unknown) {
 nunchuck1.type = NUNCHUCK;
}
delay(1000);
// Leave basic motor setting in setup()
Lib.setChipEnable(1); // Chip Enable (Operation)
Lib.setStepAngle(7.5); // Set Step angle to 7.5°

}
void interrupt()
{

Timer1.initialize(Lib.timerFire());
}
void loop()
{

nunchuck1.readData(); // Read inputs and update
maps int joy_y = nunchuck1.getJoyY();
Serial.println(joy_y); // For debugging purpose
if (nunchuck1.getButtonC() == true && nunchuck1.getButtonZ() == true) {
// Stop if C button and Z button are pressed
Lib.motorRotationStop();
} else if (nunchuck1.getButtonC() == true) {
// Rotate clockwise if C button is pressed.

Lib.motorRotationTime(100, 0, 0, 2);
}else if (nunchuck1.getButtonZ() == true) {
// Rotate counterclockwise if Z button is pressed.
Lib.motorRotationTime(100, 0, 1, 2);

}
delay(200); // Add 200 ms delay to the loop.

}

Next Step
Using this example as a reference, try more advanced

application development like the followings:
1. Examine the difference between excitation methods

Use different excitation methods to see how the
operation or sound differs.

2. Try the high efficiency drive mode
Enable the high efficiency drive mode (by setting it
High) to examine the difference of the current
consumption (the sound will also be different).

3. Make full use of joysticks.
The inclination of the joystick can be obtained
numerically. You can use
intjoy_y=nunchuck1.getJoyY(); to get the
inclination for Y direction in values between
0 to 255. Use them to change the motor speed or the
number of steps. In addition, the value of the
acceleration sensor can also be obtained. See
WiiChuck’s examples directories for more
information.

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
11

API SPECIFICATIONS

Overview of the Stepper Motor Control API
This section outlines the API for control of the Arduino

Micro Stepper motor for LV8702V motor driver.

Outline
This API provides a library for controlling the stepper

motor from the Arduino Micro with the use of ON
Semiconductor’s LV8702V motor driver. It allows the user
to easily control the stepper motor using LV8702V by
including the API library in the Arduino IDE and by writing
the API functions that match with the user’s desired
purpose(s) of use in the sketch.

When using this API library, please note that it is also
necessary to include the separate TimerOne library. For
details of how to include the TimerOne library, refer to
Quick Start Guide “Including the TimerOnce library.”

Library File Structure

Table 2. LIST OF LIBRARY FILES

File Name Description

1 keywords.txt Keyword file (sets highlightened
words in sketches)

2 LV8702_Lib.cpp Source file

3 LV8702_Lib.h Header file

Pin Assignment of the Arduino Micro/LV8702V Base
Board

The following portrays the pin assignment of the Arduino
Micro/LV8702V Base Board.

The white background color for the Arduino Micro input
and the output pins represents the resources available to
users.

Description (*1) BaseBoard Pin# LV8702V Pin name Arduino Micro LV8702V Pin name BaseBoard Pin# Description (*1)

Boost−up adjuster output pin CN3A−2 GST1 MO NC CN3A−3

NC SS NC CN3A−4

Serial1 Transmitter output pin TX NC Tx NC

Serial1 Receiver input pin RX NC Rx SGND CN3A−1 Signal GND

NC RST NC

Signal GND CN3A−1 SGND (Pull−up) CN3A−5

Driving capability margin adjuster
output pin

CN3B−1 GMG1 2 NC

Driving capability margin adjuster
output pin

CN3B−2 GMG2 3 NC

High−efficient drive switching
output pin

CN3B−3 GAD 4 SST CN3A−6
Motor stop detection signal
input pin

Forward/ reverse signal output pin CN3B−4 FR 5 MONI CN3A−7
Position detection monitor input
pin

Constant current control
reference voltage control output
pin

CN3B−5 (PWM_VREF) 6 DST1 CN3A−8
Drive status warning signal input
pin

RESET signal output pin CN3B−6 RST 7 DST2 CN3A−9
Drive status warning signal input
pin

Excitation mode switching output
pin

CN3B−7 MD2 8 VREF CN3A−10
Constant current control
reference voltage input pin

Excitation mode switching output
pin

CN3B−8 MD1 9 P/N CN3A−11 Part number detection input pin

Output enable signal output pin CN3B−9 OE 10 NC

STEP signal output pin CN3B−10 STEP 11 NC CN3A−12

Boost−up adjuster output pin CN3B−11 GST2 12 ST CN3B−12 Chip enable output pin

USB

SCK

MI

VI

RST

5V

NC

NC

A5

A4

A3

A2

A1

A0

RF

3V

13

*1 Inputs and outputs in this column refer to those of the Arduino Micro.

Figure 7. Pin Assignment of Arduino Micro/LV8702V Base Board

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
12

INITIAL SETTINGS FOR THE STEPPER MOTOR
CONTROL API

This section describes the initial settings for the Stepper
motor control API.

Resources Used by the API
This API uses the Arduino pins shown in Table 3 and the

corresponding ATmega32U4 timer register, which are not
available to users. See ATmega16U4−32U4_Datasheet.pdf
for more information about the register.

Table 3. ARDUINO MICRO PIN AND CORRESPONDING ATmega32U4 TIMER REGISTER

Arduino Pin Timer Register Description Explained in

1 D6, D13 TCCR4B Timer/Counter4 Control Register B Details of Timer Resistor Settings

Initial settings
Arduino Micro’s output pins are initialized with the

initLib function. At the time of using this API library, be sure
to call the initLib function in setup() in a sketch to initialize
the parameters, timer registers, and output pins.

For details of how to use the initLib function, refer to
initLib.

Table 4. INITIALIZED PIN SETTINGS

Initialized Items Initial Setting Value

1 Timer registers Refer to Details of Timer Resistor Settings

2 Input and output pins Refer to table 5

3 Parameters Refer to Internal Parameters List

Table 5. INITIALIZED PIN SETTINGS

Arduino Micro Output Pin Initial Setting Value Relationship

1 D2 OUTPUT Pin Assignment of the Arduino Micro/LV8702V Base Board

2 D3 OUTPUT Pin Assignment of the Arduino Micro/LV8702V Base Board

3 D5 OUTPUT Pin Assignment of the Arduino Micro/LV8702V Base Board

4 D6 OUTPUT Pin Assignment of the Arduino Micro/LV8702V Base Board

5 D7 OUTPUT Pin Assignment of the Arduino Micro/LV8702V Base Board

6 D8 OUTPUT Pin Assignment of the Arduino Micro/LV8702V Base Board

7 IO8 OUTPUT Pin Assignment of the Arduino Micro/LV8702V Base Board

8 IO9 OUTPUT Pin Assignment of the Arduino Micro/LV8702V Base Board

9 IO10 OUTPUT Pin Assignment of the Arduino Micro/LV8702V Base Board

10 IO11 OUTPUT Pin Assignment of the Arduino Micro/LV8702V Base Board

11 IO12 OUTPUT Pin Assignment of the Arduino Micro/LV8702V Base Board

12 IO13 OUTPUT Pin Assignment of the Arduino Micro/LV8702V Base Board

13 MOSI OUTPUT Pin Assignment of the Arduino Micro/LV8702V Base Board

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
13

API FUNCTION SPECIFICATIONS

Overview of API Functions

Function Description Chapter

1 initLib • Register settings
 • Input/output pin settings
 • Parameters settings

initLib

2 setChipEnable • Switch the mode of the IC between standby mode and operation mode setChipEnable

3 setReset • Reset the excitation position setReset

4 setMaxCurrent • Maximum output motor current setting setMaxCurrent

5 setRefVoltage • Output voltage setting setRefVoltage

6 setStepAngle • Step angle setting setStepAngle

7 motorRotationDeg • Rotates the motor by the set number of degrees motorRotationDeg

8 motorRotationTime • Rotates the motor by the set rotation time motorRotationTime

9 motorRotationStep • Rotates the motor for the set number of steps motorRotationStep

10 motorRotationStop • Stops the motor (but maintains the excitation state) motorRotationStop

11 motorRotationFree • Stops the motor (turns all outputs off) motorRotationFree

12 setEfficiency • High efficiency drive setting setEfficiency

13 readAdc • Analog voltage measurement readAdc

14 readDriveStatus • Reads the status of A2(DST2), A3(DST1), A4(MONI) and returns a single value
 which contains those status.

readDriveStatus

15 clrDstCount • Initialize DST count error and MONI error clrDstCount

16 guiSerialRead • Analyzes Bytestream made of the data sent by serial communication and calls
 the API

guiSerialRead

17 guiSerialParse • Analyzes the data sent by serial communication from the GUI guiSerialParse

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
14

Details of API Functions

initLib

Table 6. initLib

API function initLib()

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

void None None

Return values Type Description

int 0: “Success”
1: “Failure”

Processing
outline

1. Set timer resistors
2. Set output pins.
• D2~D7, IO8~IO13, MOSI pin
3. Initialize functions
• setChipEnable(), setReset(), setRefVoltage(), setStepAngle(), setEfficiency(), _setOutputEnable(), _setDirection(),
 _setExcitation()

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
}
void loop() {
}

setChipEnable

Table 7. setChipEnable

API function setChipEnable(byte select)

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

byte select 0 (standby mode) / 1(operation mode)

Return values Type Description

int 0: “Success”
1: “Failure” (if the parameter values set are outside the value range)

Processing
outline

• Check Index value validity
• Change chip enable (ST pin) setting
* Refer to Pin Assignment for Arduino Micro/LV8702V Base Board for more details
 select = 1 sets the IC in operation mode
 select = 0 sets the IC in standby mode (the IC becomes inoprerational)

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
 Lib.setChipEnable(1); // Operation mode
 Lib.setChipEnable(0); // Standby mode
}
void loop() {
}

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
15

setReset

Table 8. setReset

API function setReset(byte select)

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

byte Select 0 (Reset OFF) / 1 (Reset ON)

Return values Type Description

Int 0: “Success”
1: “Failure” (if the parameter values set are outside the value range)

Processing
outline

• Check Index value validity
• Change the Reset (RST Pin) setting
* Refer to Pin Assignment for Arduino Micro/LV8702V Base Board for more details
 reset = 0 sets Reset OFF (Normal state)
 reset = 1 sets Reset ON (excitation position is fixed to the initial position and the IC becomes inoperational)

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
 Lib.setChipEnable(1); // Operation mode
 Lib.setOutputEnable (1); // Output ON
}
void loop() {
 Lib.motorRotationDeg(1000,180,0,0); // Rotate the motor in Fullstep, frequency 1 kHz, forward, 180 degrees
condition
 delay(1000);
 Lib.setReset(1); //RESET ON
 Lib.setReset(0); //RESET OFF
}

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
16

setMaxCurrent

Table 9. setMaxCurrent

API function setMaxCurrent(float adpVolt, float adpCrt, float mtrCrt, float mtrRst)

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

float adpVoltage Supply voltage: 9~32 [V]

float adpCurrent Supply current: 0~10 [A]

float mtrCurrent Motor rated current: 0.1~2.5 [A]

float mtrResistance Motor winding resistance: 0.1~500 [�]

Return values Type Description

Int 0: “Success”
1: “Failure” (if the parameter values set are outside the value range)

Processing
outline

• Check Index value validity
• Derive the limit of the output current and set the value
 (Use the smallest value among adpVoltage / mtrResistance, adpCurrent / 2, and mtrCurrentas as the limit of the
 current)
• Store the result into “_current max” (a variable for output motor current limit value, this variable is used in the GUI
 and doesn’t affect other API function operations.)

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class declaration void setup() {
 Lib.initLib(); // Initialization
 Lib.setMaxCurrent(9.0, 2.0, 2.5, 36.0); // Supply voltage 9.0 [V], Supply current 2.0 [A], Motor rated current 2.5 [A],
 Motor winding resistance 30.0 [�]
}
void loop() {
}

setRefVoltage

Table 10. setRefVoltage

API function setRefVoltage(float vref)

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

float Vref Output current: 0~3 [V]

Return values Type Description

Int 0: “Success”
1: “Failure” (if the parameter values set are outside the value range)

Processing
outline

• Check Index value validity
• Translate vref(output voltage) −> dutyVal(duty cycle)
• Set PWM duty cyle in PWM_VREF output D6 pin

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
 Lib.setRefVoltage(0.2); // Reference voltage 0.2 [V]
}
void loop() {
}

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
17

setStepAngle

Table 11. setStepAngle

API function setStepAngle(float angle)

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

float Angle Step angle: 0.01~360 [degree/step]

Return values Type Description

Int 0: “Success”
1: “Failure” (if the parameter values set are outside the value range)

Processing
outline

• Check Index value validity
• Set the step angle

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
 Lib.setStepAngle(1.8); // Step angle 1.8 degrees.
}
void loop() {
}

motorRotationDeg

Table 12. motorRotationDeg

API function motorRotationDeg(float freq, float deg, byte direction, byte excitation)

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

float Freq Frequency [Hz]
1 − 4800

float Deg Drive time [sec]
0.01~16777215
0: infinity (perpetual drive)

Byte direction Direction of rotation (0: clockwise, 1: counter clockwise)

Byte excitation Method of excitation
0: Full step,1: Half step (Full−torque), 2: Half step (Smooth), 3: Quarter step

Return values Type Description

Int 0: “Success”
1: “Failure” (if the parameter values set are outside the value range)

Processing
outline

• Check Index value validity
• Enable output (OE pin)
• Rotates the motor by the number of degrees specified by the parameter deg, while controlling the frequency,
 direction of rotation and method of excitation as specified in the parameters freq, direction and excitation.
 (Refer to Internal List Parameters for initial values for each parameter.)
• If motorRotationFree() (turn off all outputs) conducted just before, this function enables the output and then rotate
 the motor)

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class class declaration
void setup() {
 Lib.initLib(); // Initialization
}
void loop() {
 Lib.motorRotationDeg(1000,180,0,0); // Rotate the motor in Fullstep, frequency 1 kHz, forward, 180 degrees
condition
 delay(5000);
 Lib.motorRotationFree(); // All outputs OFF
}

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
18

motorRotationTime

Table 13. motorRotationTime

API function MotorRotationTime(float freq, float time, byte direction, byte excitation)

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

float freq Frequency [Hz]
1 − 4800

float time Drive time [sec] 1 − 65535
0: infinity (perpetual drive)

byte direction Direction of rotation (0: clockwise, 1: counter clockwise)

byte excitation Method of excitation
0: Full step,1: Half step (Full−torque), 2: Half step (Smooth), 3: Quarter step

Return values Type Description

Int 0: “Success”
1: “Failure” (if the parameter values set are outside the value range)

Processing
outline

•Check Index value validity
•Enable output (OE pin)
• Rotates the motor for the amount of time specified by the parameter time while controlling the frequency, direction of
 rotation and method of excitation as specified in the parameters freq, direction and excitation. (Refer to Internal List
 Parameters for initial values for each parameter.)
• If motorRotaionFree() (turn off all outputs) conducted just before, this function enables the output and then rotate
 the motor)

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class class declaration
void setup() {
 Lib.initLib(); // Initialization
}
void loop() {
 Lib.motorRotationTime(1000,5,0,0); Rotate the motor in Fullstep, frequency 1 kHz, forward, 180 degrees condition
 delay(5000);
 Lib.motorRotationFree(); // All outputs off
}

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
19

motorRotationStep

Table 14. motorRotationStep

API function motorRotationStep(float freq, float step, byte direction, byte excitation)

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

float freq Frequency [Hz]
1 − 4800

float step Number of steps
1~16777215
0: infinity (perpectual drive)

byte direction Direction of rotation (0: clockwise, 1: counter clockwise)

byte Excitation Method of excitation
0: Full step,1: Half step (Full−torque), 2: Half step (Smooth), 3: Quarter step

Return values Type Description

Int 0: “Success”
1: “Failure” (if the parameter values set are outside the value range)

Processing
outline

• Check Index value validity
• Enable output (OE pin)
• Rotates the motor by the number of steps specified by the parameter step, while controlling the frequency, direction
 of rotation and method of excitation as specified in the parameters freq, cwccw and exc. (Refer to Internal List
 Parameters for initial values for each parameter.)
• Stops the motor after rotating it by the specified number of steps (but maintains a state of excitation).
• If the values for the parameters freq, step, cwccw or exc are outside the value range, the function returns Failure (1).

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
}
void loop() {
 Lib.motorRotationStep(1000,100,0,0); // Rotate the motor in Fullstep, frequency 1 kHz, forward, 180 degrees
condition
 delay(5000);
 Lib.motorRotationFree(); // All outputs off
}

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
20

motorRotationStop

Table 15. motorRotationStop

API function MotorRotationStop()

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

void None None

Return values Type Description

Void None

Processing
outline

Stops the motor (but maintains torque in a state of excitation.)

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
}
void loop() {
 Lib.motorRotationStep(1000,100,0,0); // Rotate the motor in Fullstep, frequency 1 kHz, forward, 180 degrees
condition
 delay(5000);
 Lib.motorRotationStop(); // Stop the motor
}

motorRotationFree

Table 16. motorRotationFree

API function motorRotationFree()

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

void None None

Return values Type Description

Void None

Processing
outline

Stops the motor (all outputs are switched off, and torque is lost.)

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
}
void loop() {
 Lib.motorRotationStep(1000,100,0,0); // Rotate the motor in Fullstep, frequency 1 kHz, forward, 100 steps
condition
 delay(5000);
 Lib.motorRotationFree(); // All outputs off
}

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
21

setEfficiency

Table 17. setEfficiency

API function setEfficiency(byte efficiency, byte driveMargin, byte boostup)

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

byte Efficiency High efficiency drive function
0: Normal, 1: High efficiency

byte driveMargin Margin adjustment function
0: Small, 1: Middle, 2: High

byte boostup Boost up adjustment function
0: Min, 1: Low, 2: High, 3: Max

Return values Type Description

Int 0: “Success”
1: “Failure” (if the parameter values set are outside the value range)

Processing
outline

• Check Index value validity
• Set the following functions (refer to Quick Start guide for more details)
 1. efficiency: High efficiency drive function (GAD pin) setting
 2. driveMargin: Margin adjustment function (GMG1, 2 pins) setting
 3. boostup: Boost up adjustment function (GST1, 2 pins)

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
 Lib.setEfficiency(0,0,0) // high efficiency drive off, drive mergine small, boost up min
}
void loop() {
}

readAdc

Table 18. readAdc

API function readAdc()

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

void None None

Return values Type Description

Int Analog voltage of the pin in integer (0x0~0x3FF),
Return 0xFFFF if the input voltage is outside the value range.

Processing
outline

• Call analogRead for PWM_VREF pin and return the read value.

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
}
void loop() {
 int value;
 value = Lib.readAdc(); // Read VREF voltage
}

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
22

readDriveStatus

Table 19. readDriveStatus

API function readDriveStatus()

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

void None None

Return values Type Description

unsigned long bit31 − 20:DST1 error count[0 − 255]
bit19 − 8: DST2 error count [0 − 255]
bit7 − 5: Unused
bit4: Step count error using MONI pin [0 − 1] 0: Normal 1: Error
bit3 − 2: Unused
bit1: DST1 value (real time) [0 − 1]
bit0: DST2 value (real time) [0 − 1]

Processing
outline

• Assign the drive status stored in each variable to each bit of the unsined long variable (Values of DST1, DST2 and
 MONI should be read in certain timing. Use this function to know the true status instead of reading the values of
 these pins directly.).
• Return unsined longvariable.

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
}
void loop() {
 unsigned long value;
 value = Lib.readDriveStatus (); // Read drive status
}

clrDstCount

Table 20. clrDstCount

API function clrDstCount()

Class Lib_LV8702V

Attribute Public

Parameters Type Variable Description

void None None

Return values Type Description

Void None

Processing
outline

• Clear DST1 error count, DST2 error count, and Stepcount error flag.

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
}
void loop() {
 int value;
 value = Lib.clrDstCount (); // Initialize the error count
}

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
23

guiSerialRead

Table 21. guiSerialRead

API function guiSerialRead()

Class GuiSerialInterface

Attribute Public

Parameters Type Variable Description

void None None

Return values Type Description

Void None

Processing
outline

• Gather the byte data sent by serial communication to make a Bytestream
• Analyze the Bytestream to call the corresponding API function
* Assumed to be called in a loop function of a sketch, can’t be called by using serial communication.

Example usage
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
}
void loop() {
 Lib. guiSerialRead (); // Receive serial messages.
}

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
24

guiSerialParse

Table 22. guiSerialParse

API function guiSerialParse(char *serialRecvStr)

Class GuiSerialInterface

Attribute Public

Parameters Type Variable Description

char* serialRecvStr Pointer to the data recived from serial communication

Return values Type Description

Int 0: “Success” 1: “Failure”

Processing
outline

• Return Failure (1) if parameter is out of the valid range
• Analyse theserial comucition with the GUI

Example
usage 1
(sketch)

Lib_LV8702V Lib; // Lib_ LV8702V class declaration
void setup() {
 Lib.initLib(); // Initialization
}
void loop() {
 Lib.guiSerialRead(); // Call guiSerialParse function in the guiSerialRead function
}

Example
usage 2
(sketch)

// The user can use a customized serial interface by overriding guiSerialParse() //

//Create a derived class that inherits from the Lib_LV8702 class. //
class Lib_LV8702_custom : public Lib_LV8702{
public:

virtual ~Lib_LV8702_custom() {}
int guiSerialParse(char *type) override;

};
Lib_LV8702_custom Ex; // Instantiate inherited class

//Override guiSerialParse function. //
int Lib_LV8702_custom::guiSerialParse(char *serialRecvStr){

// Implement for serial code execution.
switch (serialRecvStr[0]){

case ’a’:
{

Serial.println(”Command”);
return SUCCESS; // Return Success (0).

}
default:
{

Serial.println(”unknown command”);
}

}
return FAILURE; // Return Failure (1).

}
void setup() {

Serial.begin(19200); // Open a port at Baud rate 19200.
Ex.initLib(); // Initialization

}
void loop() {

Ex.guiSerialRead(); // Call guiSerialParse function in the guiSerialRead function process
}

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
25

SERIAL INTERFACE SPECIFICATIONS
This section describes the serial interface for the USB

connection between the computer and the Arduino Micro.
The stepper motor may be controlled using LV8702V by

implementing the serial communication settings and the
guiSerialRead function in a program on the Arduino side

(sketch) and by sending messages matched with individual
APIs from the computer through serial communication.

For the method of implementing the guiSerialRead
function, refer to guiSerialRead.

Table 23. LIST OF MESSAGES

#
Command

Value Command Name Command Description Length Chapter

1 0x03 getId For acquiring API library identification ID. 1 byte getId

2 0x04 timeoutPol Sent at uniform intervals for monitoring the serial connection. 1 byte timeoutPol

3 0x41 setChipEnable For calling same name API as command to set the power
setting.

2 byte setChipEnable

4 0x43 setReset For calling to set the RESET setting. 2 byte setReset

5 0x44 setMaxCurrent For calling same name API as command to set the output
motor current limit.

9 byte setMaxCurrent

6 0x45 setRefVoltage For calling same name API as command to set the output
motor voltage.

3 byte setRefVoltage

7 0x46 setStepAngle For calling same name API as command to set the step angle. 3 byte setStepAngle

8 0x51 motorRotationDeg For calling same name API as command to control motor
rotation by specifying the angle of rotation.

9 byte motorRotationDeg

9 0x52 motorRotationTime For calling same name API as command to control motor
rotation by specifying the rotation time.

7 byte motorRotationTime

10 0x53 motorRotationStep For calling same name API as command to control motor
rotation by specifying the step.

9 byte motorRotationStep

11 0x54 motorRotationStop For calling same name API as command to stop the motor
(while maintaining a state of excitation.)

1 byte motorRotationStop

12 0x55 motorRotationFree For calling same name API as command to stop the motor
(a turn off all outputs.)

1 byte motorRotationFree

13 0x61 setEfficiency For calling same name API as command to set high efficiency
drive settings

4 byte setEfficiency

14 0x64 readAdc For calling same name API as command to read the ADC
converted value of the VREF(A1) voltage.

2 byte readAdc

15 0x65 readDriveStatus For calling same name API as command to read drive status. 1 byte readDriveStatus

16 0x68 clrDstCount For calling same name API as command to clear error counts
of DST1 and 2 and Step count error.

1 byte clrDstCount

Details of Message Composition

getId
• Command description

This is a command for acquiring library identification data.
Upon the receipt of this command, the API returns identification data that specifies the corresponding motor driver name,

the API version and other details.

Command from GUI to Motor Driver Kit

Byte 0

Field CMD

Value 0x03

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
26

timeoutPol
• Command description

This command is for monitoring the state of the serial connection with the Arduino Micro.
The GUI sends this command every second to the Arduino Micro. If three seconds elapse without receiving data from serial

communication (including this command), the API will call the timeoutPole function to automatically stop the motor for
failsafe purposes.

Command from GUI to Motor Driver Kit

Byte 0

Field CMD

Value 0x04

setChipEnable
• Command description

This command is for calling the setChipEnable function to set the operation status of the IC
The guiSerialParse function converts receieved parameters into function parameter (argument) format and calls the

setChipEnable function.
For details of the setChipEnable function, refer to setChipEnable.

Command from GUI to Motor Driver Kit

Byte 0 1

Field CMD SELECT

Value 0x41 0x00 − 0x01

Field SELECT: Switch ChipEnable between standby mode and operation mode

setReset
• Command description

This command is for calling the setChiopEnable function to set the RESET status.
The guiSerialParse function converts receieved parameters into function parameter (argument) format and calls the setReset

function.
For details of the setReset function, refer to setReset.

Command from GUI to Motor Driver Kit

Byte 0 1

Field CMD SELECT

Value 0x43 0x00 − 0x01

Field SELECT: Switch setReset between ON and OFF

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
27

setMaxCurrent
• Command description

This command is for calling the setMaxCurrent function to set the limit of output motor current.
The guiSerialParse function converts receieved parameters into function parameter (argument) format and calls the

setmaxCurrent function.
For details of the setMaxCurrent function, refer to setMaxCurrent.

Command from GUI to Motor Driver Kit

Byte 0 1
(low)

2
(high)

3
(low)

4
(high)

5
(low)

6
(high)

7
(low)

8
(high)

Field CMD ADPVOLTAGE ADPCURRENT MTRCURRENT MTRRESISTANCE

Value 0x44 0x005A − 0x0140 0x0000 − 0x0064 0x0001 − 0x0019 0x0001 − 0x1388

Field ADPVOLTAGE: Power Supply Voltage [V * 10] (90 − 320)
The GUI multiplies the input power supply voltage (minimum unit 0.1) by 10 and transmits the resulting
value as an integer to the Arduino Micro.
The guiSerialParse function converts the received ADPVOLT to power supply voltages (9 − 32 [V]) that can
be treated as arguments to the setMaxCurrent function.

Field ADPCURRENT: Max. power supply current [A * 10] (0 − 100)
The GUI multiplies the input maximum power supply current (minimum unit 0.1) by 10 and transmits the resulting
value as an integer to the Arduino Micro.
The guiSerialParse function converts the received ADPCRT to the maximum power supply current (0 − 10 [A])
that can be treated as arguments to the setMaxCurrent function.

Field MTRCURRENT: Motor rated current [V * 10] (1 − 25)
The GUI multiplies the input motor rated current (minimum unit 0.1) by 10 and transmits the resulting value
as an integer to the Arduino Micro. The guiSerialParse function converts the received MTRCRT to a motor rated
current (0.1 − 2.5 [A]) that can be treated as arguments to the setMaxCurrent function.

Field MTRRESISTANCE: Motor winding resistance [� * 10] (1 − 5000)
The GUI multiplies the inputted motor winding resistance (minimum unit 0.1) by 10 and transmits the resulting
value as an integer to the Arduino Micro. The guiSerialParse function converts the received MTRRST into
motor−coil resistances (0.1 − 500 [�]) that can be treated as arguments of the setMaxCurrent function.

setRefVoltage
• Command description

This command is for calling the setRefVoltage function to set the output motor voltage.
The guiSerialParse function converts receieved parameters into function parameter (argument) format and calls the

setRefVoltage function.
For details of the setRefVoltage function, refer to setRefVoltage.

Command from GUI to Motor Driver Kit

Byte 0 1
(low)

2
(high)

Field CMD VREF

Value 0x45 0x0000 − 0x0110

Field VREF: Output voltage [V * 100] (0 − 300)
The GUI multiplies the output voltage input as the argument (minimum unit 0.01) by 100 and transmits the
output voltage as an integer to the Arduino Micro.
The guiSerialParse function reconverts the received VREF to output voltages (0.00 − 3.00 [V]) that can be
treated as arguments to the setRefVoltage function.

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
28

setStepAngle
• Command description

This command is for calling the setStepAngle function to set the step angle.
The guiSerialParse function converts receieved parameters into function parameter (argument) format and calls the

setStepAngle function.
For details of the setStepAngle function, refer to setStepAngle.

Command from GUI to Motor Driver Kit

Byte 0 1
(low)

2
(high)

Field CMD STEPANGLE

Value 0x46 0x0001 − 0x8CA0

Field STEP ANGLE: step angle [degrees * 100] (0 − 36000)
The GUI multiplies the input step angle (smallest unit 0.01) by 100, and sends it to the Arduino Micro as
an integer value. The guiSerialParse function then reconverts the received STEP ANGLE into a step angle
parameter (0.00 − 360.00 [Degrees]) that can be accepted by the setStepAngle function.

motorRotationDeg
• Command description

This command is for calling the motorRotationDeg function to rotate/drive the motor by the specified angle.
The guiSerialParse function converts receieved parameters into function parameter (argument) format and calls the

motorRotationDeg function.
For details of the motorRotationDeg function, refer to motorRotationDeg.

Command from GUI to Motor Driver Kit

Byte 0 1
(low)

2
(high)

3
(lowest)

4
(low)

5
(high)

6
(highest)

7 8

Field CMD FREQ ANGLE DIRECTION EXCITATION

Value 0x51 0x0000 − 0x0960 0x00000000 – 0x63FFFF9C 0x00 − 0x1 0x00 − 0X03

Field FREQ: excitation signal frequency [Hz * 10] (1 − 48000)
The GUI multiplies the input excitation signal frequency (smallest unit 0.1) by 10, and sends it to the Arduino
Micro as an integer value. The guiSerialParse function then reconverts the received FREQ into an excitation
signal frequency parameter (1 − 4800 [Hz]) that can be accepted by the motorRotationDeg function.

Field ANGLE: rotation/drive angle [Degrees * 100] (0 − 1677721500)
The GUI multiplies the input rotation/drive angle (smallest unit 0) by 100, and sends it to the Arduino Micro as
an integer value. The guiSerialParse function then reconverts the received ANGLE into an excitation signal
frequency parameter (0 − 16777215 [degrees]) that can be accepted by the motorRotationDeg function.

Field DIRECTION: direction of rotation
Field EXCITATION: method of excitation

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
29

motorRotationTime
• Command description

This command is for calling the motorRotationTime function to rotate/drive the motor for the specified period of time.
The guiSerialParse function converts receieved parameters into function parameter (argument) format and calls the

motorRotationTime function.
For details of the motorRotationTime function, refer to motorRotationTime.

Command from GUI to Motor Driver Kit

Byte 0 1
(low)

2
(high)

3
(low)

4
(high)

5 6

Field CMD FREQ TIME DIRECTION EXCITATION

Value 0x52 0x0000 − 0x0960 0x0000 − 0x0FFFF 0x00 − 0x1 0x00 − 0x03

Field FREQ: excitation signal frequency [Hz * 10] (1 − 48000)
The GUI multiplies the input excitation signal frequency (smallest unit 0.1) by 10, and sends it to the Arduino
Micro as an integer value. The guiSerialParse function then reconverts the received FREQ into an excitation
signal frequency parameter (1 − 4800 [Hz]) that can be accepted by the motorRotationTime function.

Field TIME: rotation/drive time [sec]
Field DIRECTION: direction of rotation
Field EXCITATION: method of excitation

motorRotationStep
• Command description

This command is for calling the motorRotationStep function to rotate/drive the motor for the specified number of steps.
The guiSerialParse function converts receieved parameters into function parameter (argument) format and calls the

motorRotationStep function.
For details of the motorRotationStep function, refer to motorRotationStep.

Command from GUI to Motor Driver Kit

Byte 0 1
(low)

2
(high)

3
(lowest)

4
(low)

5
(high)

6
(highest)

7 8

Field CMD FREQ STEP DIRECTION EXCITATION

Value 0x53 0x0000 − 0x0960 0x00000000 – 0x00FFFFFF 0x00 − 0x1 0x00 − 0X03

Field FREQ: excitation signal frequency [Hz * 10] (1 − 48000)
The GUI multiplies the input excitation signal frequency (smallest unit 0.1) by 10, and sends it to the Arduino
Micro as an integer value. The guiSerialParse function then reconverts the received FREQ into an excitation
signal frequency parameter (1 − 4800 [Hz]) that can be accepted by the motorRotationStep function.

Field STEP: number of rotation/drive steps [step]
Field DIRECTION: direction of rotation
Field EXCITATION: method of excitation

motorRotationStop
• Command description

This command is for calling the motorRotationStop function to stop the motor (while maintaining torque in a state of
excitation.)

For details of the motorRotationStop function, refer to motorRotationStop.

Command from GUI to Motor Driver Kit

Byte 0

Field CMD

Value 0x54

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
30

motorRotationFree
• Command description

This command is for calling the motorRotationFree function to stop the motor (and turn of all outputs.)
For details of the motorRotationFree function, refer to motorRotationFree.

Command from GUI to Motor Driver Kit

Byte 0

Field CMD

Value 0x55

setEfficiency
• Command description

This command calls setEfficiency function to set ON/OFF of the high efficiency drive function.
The guiSerialParse function converts the received parameters into arguments and call the setEfficiency function, and returns

the calculated limit of the motor current to the transmitter along with the CMD 0x31.
See setEfficiency for more information on setEfficiency.

Command from GUI to Motor Driver Kit

Byte 0 1 2 3

Field CMD EFFICIENCY DRIVEMARGIN BOOSTUP

Value 0x61 0x00 − 0x01 0x00 − 0x02 0x00 − 0x03

Field EFFICIENCY : High efficiency drive function
Field DRIVEMARGIN: Margin−adjusting function
Field BOOSTUP: Boost Up adjusting function

Command from Motor Driver Kit to GUI

Byte 0 1
(low)

2
(high)

Field CMD MAXCURRENT

Value 0x31 0x0000 − 0x0110

Field MAXCURRENT: Upper limit of the output motor current [A * 100]

readAdc
• Command description

This command is used to call readAdc function and measure the VREF (A1) voltage. guiSerialParse function call readAdc
function and returns the read analog−voltage values to the transmitter along with the CMD 0x32.

See readAdc for more information on readAdc function.

Command from GUI to Motor Driver Kit

Byte 0

Field CMD

Value 0x64

Field PIN: Read pin number

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
31

Command from Motor Driver Kit to GUI

Byte 0 1
(low)

2
(high)

Field CMD RECVADC

Value 0x32 0x0000 − 0x03FF

Field RECVADC: Analog Voltage Values (0 to 1023)

readDriveStatus
• Command description

This command is used to call readDriveStatus function and notify the initial excitation position.
See readDriveStatus for more information on readDriveStatus function.

Command from GUI to Motor Driver Kit

Byte 0

Field CMD

Value 0x66

clrDstCount
• Command description

This command is used to call clrDstCount function and notify the judged result of low−speed rotation.
See clrDstCount for more information on clrDstCount functions.

Command from GUI to Motor Driver Kit

Byte 0

Field CMD

Value 0x67

DETAILS OF TIMER RESISTOR SETTINGS

TCCR4B Setting
The TCCR4B is a 10−bit high speed counter/timer

4 register. Each bit contains the data shown in the table
below.

bit 7 (MSB) 6 5 4 3 1 1 0 (LSB)

PWM4X PSR4 DTPS41 DTPS40 CS43 CS42 CS41 CS40

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value
Arduino Micoro

0 0 0 0 0 1 1 1

For LV8702V, the PWM frequency used for the D6 pins
is fixed at 31.373 [kHz]. Therefore, according to the
following formula, it is necessary to set the frequency
division ratio to “1” for the register.

[Phase Correct PWM frequency deriviation]
(Clock frequency / Division ratio) x (1 / (TOP x 2)) [Hz]
= {(16.0 x 10 ^ 6 / 1) x (1 / 510)} / 10 ^ 3 = 31.373 [kHz]

Division ratio is determined by the combination of the
4 bits in CS(Clock Selector) of TCCR4B as shown in the
table below. Set (CS43, CS42, CS41, CS40) = (0, 0, 0, 1) for
LV8702V .

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
32

CS43 CS42 CS41 CS40 Division (Ratio)

0 0 0 0 Timer / Counter
stop operation

0 0 0 1 1/1

0 0 1 0 1/2

0 0 1 1 1/4

0 1 0 0 1/8

0 1 0 1 1/16

0 1 1 0 1/32

0 1 1 1 1/64

1 0 0 0 1/128

1 0 0 1 1/256

1 0 1 0 1/512

1 0 1 1 1/1024

1 1 0 0 1/2048

1 1 0 1 1/4096

1 1 1 0 1/8192

1 1 1 1 1/16384

OVERVIEW OF INTERNAL PARAMETERS,
TABLES AND FUNCTIONS

Internal Parameters List
The table below provides a list of internal parameters.

Table 24. LIST OF INTERNAL PARAMETERS

Parameter Initial Value Description Timing of Update

PROTECTED

1 _isRotation false Motor rotation flag Change using
motorRotationDeg
motorRotationTime
motorRotationStep
motorRotationStop
motorRotationFree

2 _currentMax 2.72 Limit of output motor current Change using
setMaxCurrent

3 _stepAngle STEP_ANGLE_MIN Motor step angle Change using
setStepAngle

4 _reset RESET_OFF RESET status Change using
setReset

5 _direction DIRECTION_CW Direction of rotation Change using
motorRotationDeg
motorRotationTime
motorRotationStep

6 _excitation EXCITATION_FULL Method of excitation Change using
motorRotationDeg
motorRotationTime
motorRotationStep

7 _stepFreq 0 Step frequency Change using
motorRotationDeg
motorRotationTime
motorRotationStep

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
33

Table 24. LIST OF INTERNAL PARAMETERS (continued)

Timing of UpdateDescriptionInitial ValueParameter

PROTECTED

8 _nowFreq 0 Current step frequency Change using
motorRotationDeg
motorRotationTime
motorRotationStep

9 _phaseFlag 0 Phase flag Change using
motorRotationFree

10 _targetStep 0 Target step angle Change using
motorRotationDeg
motorRotationTime
motorRotationStep

11 _nowStep 0 Current step number Change using
motorRotationDeg
motorRotationTime
motorRotationStep
motorRotationStop
motorRotationFree
timerFire

12 _dstVal1 HIGH DST1 value (read in realtime) Change using
timerFire

13 _dstVal2 HIGH DST2 value (read in realtime) Change using
timerFire

14 _dstCnt1 DST_COUNT_MIN DST1 error count Change using
ClrDstCount
timerFire

15 _dstCnt2 DST_COUNT_MIN DST2 error count Change using
clrDstCount
timerFire

16 _stepCnt STEP_COUNT_INITIAL Counter for generated step pulse Change using
timerFire

17 _stepCntLimit STEP_COUNT_LIMIT_FULL Maximum value for step pulse
generation

Change using
timerFire

18 _stepCntErr STEP_COUNT_NON_ERROR Step count error status Change using
clrDstCount
timerFire

19 _stepCntErrMask STEP_COUNT_ERROR_MASK Count error state mask Change using
timerFire

20 _fallingEdge true Pulse falling edge flag Change using
motorRotationStep
motorRotationStop
motorRotationFree
timerFire

PRIVATE

21 CHIP_ENABLE_OFF 0 Power OFF Constant value

22 CHIP_ENABLE_ON 1 Power ON Constant value

23 OUTPUT_ DISABLE 0 Output OFF Constant value

24 OUTPUT_ ENABLE 1 Output ON Constant value

25 RESET_OFF 0 Reset OFF status Constant value

26 RESET_ON 1 Reset ON status Constant value

27 ADAPTER_VOLTAGE_MIN 9 Minimum value of supply
voltage

Constant value

28 ADAPTER_VOLTAGE_MAX 32 Maximum value of supply
voltage

Constant value

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
34

Table 24. LIST OF INTERNAL PARAMETERS (continued)

Timing of UpdateDescriptionInitial ValueParameter

PRIVATE

29 ADAPTER_CURRET_MIN 0 Minimum value of supply
current

Constant value

30 ADAPTER_CURRET_MAX 10 Maximum value of supply
current

Constant value

31 MOTOR_CURRET_MIN 0.1 Minimum value of Motor rated
current

Constant value

32 MOTOR_CURRET_MAX 2.5 Maximum value of Motor rated
current

Constant value

33 MOTOR_RESISTANCE_MIN 0.1 Minimum value of Motor
winding resistance

Constant value

34 MOTOR_RESISTANCE_MAX 500 Maximum value of Motor
winding resistance

Constant value

35 VREF_MIN 0 Minimum value of output
voltage

Constant value

36 VREF_MAX 3 Maximum value of output
voltage

Constant value

37 REFERENCE_VREF 0.33 Output motor voltage for the
reference motor

Constant value

38 STEP_ANGLE_MIN 0.01 Minimum value for number of
steps

Constant value

39 STEP_ANGLE_MAX 360 Maximum value for number of
steps

Constant value

40 FREQ_MIN 1 Minimum value of PWM
frequency

Constant value

41 FREQ_MAX 4800 Maximum value of PWM
frequency

Constant value

42 ANGLE_MIN 0 Minimum value of rotation angle Constant value

43 ANGLE_MAX 16777215 Maximum value of rotation angle Constant value

44 TIME_MIN 0 Minimum value of rotation time Constant value

45 TIME_MAX 65535 Maximum value of rotation time Constant value

46 STEP_MIN 0 Minimum value for number of
steps

Constant value

47 STEP_MAX 16777215 Maximum value for number of
steps

Constant value

48 DIRECTION_CW 0 Clockwise rotation Constant value

49 DIRECTION_CCW 1 Counterclockwise rotation Constant value

50 EXCITATION_FULL 0 Full step Constant value

51 EXCITATION_HALF100 1 Half 100% step Constant value

52 EXCITATION_HALF70 2 Half 70% step Constant value

53 EXCITATION_QUARTER 3 1/4 step Constant value

54 EFFICIENCY_NORMAL 0 Normal drive Constant value

55 EFFICIENCY_HIGH 1 High efficiency drive Constant value

56 DRIVE_MARGIN_S 0 DriveMargin SMALL Constant value

57 DRIVE_MARGIN_M 1 DriveMargin MIDDLE Constant value

58 DRIVE_MARGIN_L 2 DriveMargin LARGE Constant value

59 BOOST_UP_MIN 0 BoostUp MIN Constant value

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
35

Table 24. LIST OF INTERNAL PARAMETERS (continued)

Timing of UpdateDescriptionInitial ValueParameter

PRIVATE

60 BOOST_UP_LOW 1 BoostUp LOW Constant value

61 BOOST_UP_HIGH 2 BoostUp HIGH Constant value

62 BOOST_UP_MAX 3 BoostUp MAX Constant value

63 DST_COUNT_MIN 0 Minimum value for DST Count Constant value

64 DST_COUNT_MAX 255 Maximum value of DST Count Constant value

65 MONI_INITIAL 0 The Initial position for
Excitation position

Constant value

66 MONI_NON_INITIAL 1 Excitation position other than
the Initial position

Constant value

67 STEP_COUNT_INITIAL 0 Initial position for step count Constant value

68 STEP_COUNT_LIMIT_FULL 4 Maximum value of step count
in Full Step mode

Constant value

69 STEP_COUNT_LIMIT_HALF 8 Maximum value of step count
in Half Step mode

Constant value

70 STEP_COUNT_LIMIT_QUARTER 16 Maximum value of step count
in Quarter Step mode

Constant value

71 STEP_COUNT_NON_ERROR 0 No error in step count Constant value

72 STEP_COUNT_ERROR 1 Error in step count Constant value

73 STEP_COUNT_ERROR_UNMASK 0 Unmask flag for step count
error

Constant value

63 STEP_COUNT_ERROR_MASK 2 Mask flag for step count error Constant value

64 SRMES_GET_ID 0x03 getId API response serial
message identifier

Constant value

65 SRMES_POLLING_ID 0x04 timeoutPol API serial message
identifier

Constant value

66 SRMES_SET_CHIP_ENABLE 0x41 setChipEnable API serial mes-
sage identifier

Constant value

67 SRMES_SET_RESET 0x43 setReset API serial message
identifier

Constant value

68 SRMES_SET_MAX_CURRENT 0x44 setMaxCurrent API serial
message identifier

Constant value

69 SRMES_SET_REF_VOLTAGE 0x45 setRefVoltage API serial
message identifier

Constant value

70 SRMES_STEP_ANGLE 0x46 setStepAngle API serial
message identifier

Constant value

71 SRMES_ROTATION_ANGLE 0x51 motorRotationDeg API serial
message identifier

Constant value

72 SRMES_ROTATION_TIME 0x52 motorRotationTime API serial
message identifier

Constant value

73 SRMES_ROTATION_STEP 0x53 motorRotationStep API serial
message identifier

Constant value

74 SRMES_ROTATION_STOP 0x54 motorRotationStop API serial
message identifier

Constant value

75 SRMES_ROTATION_FREE 0x55 motorRotationFree API serial
message identifier

Constant value

76 SRMES_SET_EFFICIENCY 0x61 setEfficiency API serial
message identifier

Constant value

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
36

Table 24. LIST OF INTERNAL PARAMETERS (continued)

Timing of UpdateDescriptionInitial ValueParameter

PRIVATE

77 SRMES_READ_ADC 0x64 readAdc API serial message
identifier

Constant value

78 READ_DRIVESTATUS 0x65 readDriveStatus API serial
message identifier

Constant value

79 SRMES_CLR_DST_COUNT 0x68 readSst API serial message
identifier

Constant value

80 SRMES_RES_MAX_CURRENT 0x31 setMaxCurrent (for transmission)
API serial message identifier

Constant value

81 SRMES_RES_READ_ADC 0x32 readAdc (for transmission) API
serial message identifier

Constant value

82 SRMES_RES_READ_DRIVESTATUS 0x33 readMoni (for transmittion) API
serial message identifier

Constant value

List of Internal Structures
The table below provides a list of internal structures.

Table 25. LIST OF INTERNAL STRUCTURES

Structure Description

1 SrMesDivSetChipEnable Structure containing serial communication parameters for setChipEnable

2 SrMesDivSetReset Structure containing serial communication parameters for setReset

3 SrMesDivSetMaxCurrent Structure containing serial communication parameters for setMaxCurrent

4 SrMesDivSetRefVoltage Structure containing serial communication parameters for setRefVoltage

5 SrMesDivSetStepAngle Structure containing serial communication parameters for setStepAngle

6 SrMesDivRotationDeg Structure containing serial communication parameters for motorRotationDeg

7 SrMesDivRotationTime Structure containing serial communication parameters for motorRotationTime

8 SrMesDivRotationStep Structure containing serial communication parameters for motorRotationStep

9 SrMesDivSetEfficiency Structure containing serial communication parameters for setEfficiency

10 SrMesDivRecvMaxCurrent Structure containing serial communication parameters for setMaxCurrent (transmission)

11 SrMesDivRecvReadAdc Structure containing serial communication parameters for readAdc (transmission)

12 SrMesDivRecvReadDriveStatus Structure containing serial communication parameters for readDriveStatus (transmission)

List of Internal Functions
The table below provides a list of internal functions.

Table 26. LIST OF INTERNAL FUNCTIONS

Function Description Calling Function

1 _setOutputEnable Reflect Output Enable setting in IO10 pin. motorRotationDeg
motorRotationTime
motorRotationStep
motorRotationFree

2 _setExcitation Reflect Excitation setting in IO9/IO8 pin motorRotationDeg
motorRotationTime
motorRotationStep

3 _setDirection Reflect Direction setting in D5 pin motorRotationDeg
motorRotationTime
motorRotationStep

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
37

HARDWARE SPECIFICATIONS

OPERATING CONDITIONS
Power Supply Voltage

The LV8702V data sheet specifies the power voltage
range of 9.0 V to 32 V as a part of the recommended
operating conditions. This means that the IC will operate
stably when a voltage within this range is applied to it. Check
the specifications of the motor used before determining the
voltage.

If any motor with low winding resistance is used, an
overcurrent may occur that may cause damage to the IC.

In the case of using batteries as a power supply, it is
presumed that the voltage will fall to 4 volts or below. In this
event, the circuit inside the IC may become unstable and,
with its low voltage protection feature, the IC will
automatically stop operation. (Low Voltage Protection
Function)

When the motor is in operation, the power supply voltage
may be raised. The LV8702V has a rated maximum voltage
of 36 V. Even an instantaneous excess over this level can
cause damage to the IC.

(Refer to Regenerative Current in the next section)

Maximum Current
The electric current level that may flow through the metal

lines between the output transistors in a motor driver IC and
between the IC chip and IC pins is limited. Current beyond
those limits maybe cause damage to the ICs. For this reason,
the maximum output current (hereinafter referred to as
“Iomax”) for motor driver ICs is specified on a
model−by−model basis.

For LV8702V, Iomax is specified at 2.5 A. It is necessary
to pay attention to avoid any excess over this level.

In addition, please note that Iomax does not garantee the
level of current that can always flow. IC operation may be
stopped even if the output current is lower than the Iomax
due to the temperature rise of the IC. (Refer to the next
paragraph).

Operating Temperature
In semiconductor products, an excess over the rated

maximum junction temperature (around 150°C) causes
damage to ICs.

In other words, normal operation is anticipated at any
temperature lower than the rated maximum junction

temperature. ICs, and especially motor driver ICs, have a
high power consumption and generate heat on their own.
With their thermal shutdown feature, ICs automatically stop
functioning if their internal temperature surpasses the rated
maximum junction temperature due to the ambient
temperature of the operating environment and the ICs’
self−heating.

Please also note that the rated maximum levels,
recommended operating conditions and electrical
characteristics of ICs are specified under conditions with an
ambient temperature (Ta) of 25�C. (Refer to the datasheet of
LV8702V)

GLOSSARY

Back Electromotive Voltage
Motors not only convert electrical energy into mechanical

energy, but also generate electricity from mechanical
energy. The voltage thus generated is called back
electromotive voltage, back electromotive force or induced
voltage.

At the time of the startup of a motor, no back
electromotive voltage is generated. An electric current
called a rush current flows, induced by the voltage that
applies to the motor and the motor winding resistance.

The rush current lasts only a short time in the event of
motor startup, but it is the peak current for the motor drive.
The strength of back electromotive force increases as the
rotation speed of the motor increases, and the back
electromotive force acts to cancel the applied voltage, which
makes it difficult for the motor drive current to flow.

H−bridge
As shown in Fig. 8, transistors are connected inside the IC

terminals connected to the motor connection terminals,
namely OUT_A, OUT_B, OUT_C, and OUT_D, on the
baseboard. This circuit is called H−bridge after the shape of
the alphabetic character constituted by the transistor and
motor coils.

LV8702V incorporates two H−bridges.
Though some ICs (e.g. LV8548MC) can drive two DC

motors with this circuit, LV8702V specializes to drive one
bipolar type step motor.

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
38

OUT_A OUT_B

OUT_AOUT_B OUT_B OUT_B

OUT_A OUT_B OUT_AOUT_A OUT_B OUT_B

R1

(1.) (2.) (3.)

(6.) (5.) (4.)

Figure 8. Electric Current of Each H Bridge States of LV8702V

Active transistors Active diodes

PWM Chopping
LV8702V controls motor current by PWM−current

chopping. PWM stands for Pulse Width Modulation.
PWM−current chopping is widely used to apply a pulsed
voltage, control the rotational speed and torque of the motor,
and drive the motor efficiently, instead of applying a
constant voltage as when the battery is connected directly to
the motor.

LV8702V switches ON/OFF of the H−bridge transistors
to control the motor current by repeating transitions to 6
states (See Figure 8).

The duration of the cycle of (1.) to (6.) depends on the
capacitance of the capacitor between the CHOP terminal
and the ground, and is set to 15 �S at the time of shipping.

1. The two circle−marked transistors turn on and
current flows from the power supply in the direction
OUT_A → OUT_B.
(For reverse conduction, the lower transistor turns
on on the OUT_A side and the upper transistor turns
on on the OUT_B side.)
Since the motor coils store energy by this current, the
condition (1.) is called charge. At this time, the
motor current flows through R1 (hereinafter referred

to as “current detection resistor”) to GND, and
LV8702V monitors the voltages generated by the
motor current and the current detection resistor.

2. When the voltage applied to the current detecting
resistor exceeds 1/5 of the VREF terminal input
voltage, the upper transistor of OUT_A is turned off
to stop supplying current to the motor. Since the coil
attempts to flow current in the same direction as (1.)
using the stored energy, the current flows through the
triangle−marked diode in the built−in IC in the path
indicated by the arrow.
If the state (2.) does not exist and the transition from
(1.) to (3.) is made, if the upper transistor of OUT_A
is delayed to become off faster than the lower
transistor becoming on, the power supply and GND
will be short−circuited, resulting in a high current
flow (through current). In order to prevent this,
LV8702V has (2.) in a very short period.

3. The lower transistor of OUT_A is turned on and the
current loop of (2.) is maintained. At this time, the
motor current gradually decreases because the
current source is cut off. Because the rate of decline
is slow, the condition (3.) is called Slow Decay.

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
39

4. The lower transistor of OUT_B turns OFF about
1 �S before charging again. Since the motor current
continues to flow from OUT_A to OUT_B, the
current flows through the triangle−marked diode in
the IC in the loop indicated with the arrows
(regenerative current). (4.) is provided to prevent the
generation of a through current during the transition
from (3.) to (5.).

5. Continued application of current to the diode may
cause heat generation. To avoid this, two transistors
are turned on to allow regenerative current to flow.
(Synchronous rectification)
The decay speed of the current at this time is faster
than that in (3.) and is therefore referred to as Fast
decay. If the motor current decreases and the energy

is lost, current may flow from the power supply
through the two transistors in the opposite direction
to the motor, but LV8702V also prevents such
phenomenon.

6. During the transition from (5.) to (1.), in order to
prevent the generation of the through current and to
maintain the direction of the motor current flow, all
transistors are turned off, and the regenerative
current flows through the two triangle−marked
diodes.

This method of controlling the motor current to a constant
level by repeatedly increasing (charging) and decreasing
(slow/fast decay) the motor current is called PWM current
chopping.

Charge Charge Charge

Slow
Decay

Fast
Decay

Slow
Decay

Fast
Decay

Fast
Decay

Slow
Decay

Current Limit

Figure 9. Output Current Waveform of PWM Current Chopping

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
40

Regenerative Current
As described above, the energy stored in the motor

generates regenerative current which flows into the power
supply. If a stabilized power supply is used, this current can
be absorbed to maintain the applied voltage. However, in the
case of power supplys such as AC adapters and batteries,
they cannot absorb the regenerative current, which causes
a large increase in voltage.

This results in a sudden increase in the voltage applied to
the IC, in some cases damaging or destroying the IC itself.

In the case of the LV8702V, the maximum rated power
supply voltage is 36 V. Care is required to ensure that the
applied voltage does not exceed this rated value. Mounted
on the baseboard, a 100 �F electrolytic capacitor works to
suppress the voltage surge in this situation (refer to Fig. 10).

2.88 V
0.6 V

12 V

Figure 10. Rise in Power Supply Voltage by Regenerative Current and Effect of Electrolytic Capacitor

This diagram shows the rise in power sup-
ply voltage that is induced by the regener-
ative current in Fig. 3.2.1 when the motor
is driven at a current of approximately 300
mA, using ON Semiconductor’s motor
driver IC, powered by a 12 V AC adapter
(with no capacitor connected.)

This diagram shows the rise in power supply
voltage that is induced by the regenerative
current in Fig. 3.2.1 when the motor is driven
at approximately 1.5 A after a capacitor is
connected.

As a method of suppressing this voltage rise, there is a
method of introducing a voltage clamp circuit as shown in
Fig. 11. When Tr: FQP20N06, Di: 1N5240B (both
ON semiconductor) and R1: 1.5 k� are used, the VCC
voltage can be limited to less than 36 V by adjusting R2 to
270 to 470 �. When the VCC voltage exceeds the set value,
Tr is turned on, and the current causing the voltage rise is
pulled to GND, thereby suppressing the voltage rise further.

VCC

Tr
FQP20N06

Di
1N5240B

R1
1.5 k�

R2
270~470��

Figure 11. An Example of Power Supply Voltage
Clamp Circuit

Unipolar Type and Bipolar Type Stepper Motors
As shown below in Fig. 12 and 13, stepper motors are

classified into two types according to their internal
structures and corresponding differences in drive
mechanism.

Direction of Current Flow Number of Wires

Unipolar Unidirectional 6 or 5

Bipolar Bidirectional 4

ON Semiconductor’s monolithic LSI stepper motor driver
ICs (including LV8702V) are designed for bipolar types
(two−phase) motors.

While it is also possible to use them to drive unipolar
motors, there are some cases in which differences in motor
performance may arise in comparison with dedicated driver
ICs. Verification and evaluation are therefore required.
(Refer to Fig. 14).

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
41

Figure 12. Structure & Drive Method for
a Unipolar Motor

Figure 13. Structure & Drive Method for
a Bipolar Motor

Connection example 1 Connection example 2

Figure 14. Connection Methods for Bipolar Drive of a Unipolar Motor

Step Angle
Unlike DC brush motors, it is possible to control the rotor

position of a stepper motor even without sensors. This is
because motors has characteristic step angles.

This step angle can be understood as “the angle by which
the motor (or rotor) rotates per step when driven in Full step
mode.” It is therefore possible to ascertain the rotation angle
by managing the number of steps that corresponds to the
signal entered into a motor driver IC.

The structure of a stepper motor can be explained simply
as consisting of orthogonally arranged two sets (two phases)

of coils positioned facing one another, and a bar magnet in
the middle that represents the rotor. (Fig. 15, and 16).

In Full step mode, both sets of coils are constantly excited
(have electric current flowing through them). The bar
magnet therefore stabilizes at positions where the
neighboring coils attract the relevant poles. The direction of
current flowing in the two pairs of coils is switched
continuously such that the bar magnet rotates. For this
reason, Full step method is also called called 2−phase
excitation method (Refer to Fig. 15).

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
42

A A A A

B B

A’

BB

B’ B’ B’ B’

A’ A’ A’

1 2 3 4

Figure 15. Full Step Change in Electrical Angle in Full Step

Red: excited to form an N−pole, Blue: excited to form an S−pole

For motors running in Half step, the amount of movement
per step is half that of the one for Full step. This is because
the timing for passing current through one set of coils

(1−phase excitation) and 2−phase excitation are alternated in
the case of Half step. For this reason, Half step motors are
also called 1 − 2 phase excitation motors. (refer to Fig. 15).

A A A A

B B

A’

BB

B’ B’ B’ B’

A’ A’ A’

1 2 3 4

A A A A

B B

A’

BB

B’ B’ B’ B’

A’ A’ A’

5 6 7 8

Figure 16. Half Step Change in Electrical Angle in Full Step

Red: excited to form an N−pole, Blue: excited to form an S−pole, Black: state of non−excitation

While Full step operation takes four positions, Half step
takes eight.

However, the angle represented in these four or eight
positions is electrical angle, which differs from step angle.

As mentioned earlier, step angle is “the angle by which the
motor (or rotor) rotates per step when driven in Full step
mode.” One step when driven in Full step mode corresponds
to an electrical angle of 90 degrees.

Therefore, please understand that step angle = electrical
angle of 90 degrees.

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
43

Micro−Step
The Full step and Half step methods controls the position

of the rotor according to the excited coils and the direction
of excitations. In addition, by controlling the energizing
current ratio, differences are generated between the forces of
the two coils to attract the rotors, enabling fine position
control in units of 1/4, 1/8, 1/16, and smaller portions of the
step angle. This is a control method called micro−step.

In Fig. 17, �2’ indicates the two−phase excitation position
in Full step and normal Half step, and �0 and �4 indicate the
position of the one−phase excitation of Coil A and Coil B.

When the current ratio is changed so that the combined
vector of the two coil currents follows the arc, the motor
rotates smoothly.

In addition to Full step and Half step (Full−torque),
LV8702V can be controlled by the Half step (Smooth) where
the combined vector during two−phase excitation is placed
on the arc and the Quarter step.

0 20 40 60 80 100

20

40

60

80

100

�2

� 2’
�1

�0

�3

�4

Coil B Current Ratio [%]

C
o

il
A

 C
u

rr
en

t
R

at
io

 [
%

]

Figure 17. The Arc of the Output Current Vector
(Step Angle is Normalized to 90 Degrees)

Table 27. CURRENT RATIO FOR EACH EXCITATION METHODS

Full Step Half Step (Full−torque) Half Step (Smooth) Quarter Step

Coil A Coil B Coil A Coil B Coil A Coil B Coil A Coil B

�0 − − 100% 0% 100% 0% 100% 0%

�1 − − − − − − 92% 38%

�2 100% 100% 100% 100% 70% 70% 70% 70%

�3 − − − − − − 38% 92%

�4 − − 0% 100% 0% 100% 0% 100%

Full Step Half Step (Full−torque) Half Step (Smooth) Quarter Step

Figure 18. Output Current Waveform (OUT_A)

The formula for calculating the time taken for a rotation
using a step angles, an excitation method, a motor speed and
a transfer unit is expressed as follows.

These can be used as parameters (arguments) for the delay
function.

Full step 1

Half step (Full torque) 1/2

Half step (Smooth) 1/2

Quarter step 1/4

The algebraic arithmetic expression is an example for a
rotation time of 10000 ms (i.e. 10 seconds).

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
44

Condition 1)
• Motor Speed Unit: [step/s]

• Transfer Unit: [Degrees]

Rotation Time [ms]
= Transfer Angle [Degrees] ÷ (Step Angle [Degrees] ÷ Excitation Method x Motor Speed [step/s]) x 1000

750 [Degrees] ÷ (7.5 [Degrees] ÷ 1 x 10 [step/s]) x 1000

Condition 2)
• Motor Speed Unit: [rpm]

• Transfer Unit: [Degrees]

Rotation Time [ms]
= Transfer Angle [Degree] ÷ (Motor Speed [rpm] x 360 [°]) x 60 [sec] x 1000

1200 [Degree] ÷ (20 [rpm] x 360 [°]) x 60 [sec] x 1000

Condition 3)
• Motor Speed Unit: [step/s]

• Transfer Unit: [Steps]

Rotation Time [ms]
= Transfer Step [Step] ÷ Motor Speed [step/s] x 1000

500 [Step] ÷ 50 [step/s] x 1000

Condition 4)
• Motor Speed Unit: [rpm]

• Transfer Unit: [Steps]

Rotation Time [ms]
= Transfer Step [Step] x Step Angle [Degrees] ÷ Excitation Method ÷ (Motor Speed [rpm] x 360 [°]) x 60 [sec] x 1000

800 [Step] x 7.5 [Degrees] ÷ 1 ÷ (100 [rpm] x 360 [°]) x 60 [sec] x 1000

Stall
As mentioned earlier, a stepper motor rotates by

transitioning its rotor in synchronization with the state of
excitations of its coils. If the transition of the state of
excitations operated by control signals is too fast, and the
load placed on a motor is too great, the rotor becomes unable
to keep up with the signal, and the motor may vibrate or stop
moving. This phenomenon is called “stall”.

The maximum speed of rotation and maximum load that
can be placed on the motor differs depending on the motor
used.

Since these attributes are also dependent on the drive
current applied to the motor, in the case of LV8702V, these

attributes may change due to adjustments in power supply
voltage. In addition, motor current can cause stall due to the
torque shortage of a motor with respect to the load.

LV8702V uses the high efficiency drive function to
optimize the motor current by obtaining data from the
rotational status of the motor. When no torque is required,
such as when no load is applied, the current is suppressed,
and when torque is required, a current necessary for
preventing step−out is supplied.

However, this does not mean that this function can prevent
stall in any case, since no more current than the set value or
the maximum value of current supply capability of the
power supply is allowed to flow.

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
45

POINTS TO NOTE IN CIRCUIT BOARD LAYOUTS
A circuit board with motor driver ICs must have its layout

devised in consideration of the electric current, heat
generation due to power consumption, and noise caused by
motor operation. Without a properly constructed layout, the
expected performance may not be obtained.

While LV8702V is capable of sensitive motor control, it
itself can be a source of noise due to PWM−driven operation.

1. Be sure to put a capacitor between VCC (power
supply) and the ground (GND).
For the purpose of driving a motor, an electric
current is supplied from the power supply to the
motor. This will cause an instantaneous drop in the
power supply voltage. If the PWM control used, this
phenomenon occurs often and possibly destabilize
the operation of the internal circuit in the IC. A
capacitor is placed for the purpose of suppressing
this voltage drop.
It is desirable to place the capacitor as close as
possible to the IC.

2. Use thick, short lines for VCC, GND and OUT
connection.
On these three different kinds of lines, high electric
currents flow. A fine or long line has resistance that
causes heat generation and a voltage drop.
LV8702V motor driver module is designed with a
four−layer circuit board, the 2nd layer is for GND
pattern and the 3rd layer is for the power supply
pattern and a part of the signal lines. A large number
of through holes are provided to connect the same
lines in different layers, thereby reducing electrical
resistance.

3. Draw ground wiring for the control circuit system
and ground wiring for the power system separately.
LV8702V has two different types of GND pins. The
GND pins of the control circuit inside the IC are
SGND, and GND pins through which large currents
flow are PGND1 and PGND2. Contrary to the power
voltage drop discussed in 1, when the motor drive
current flows through the GND, the GND level rises
due to the relationship between the GND’s
interconnection resistance and the electric current.
The exposure of the control circuit to this impact
leads to a change in the GND level as a reference for
control and causes malfunction. To avoid this, it is

ideal to draw the wiring for SGND and the wiring for
PGND separately if possible and to make them
interconnect solely at the GND position with the
capacitor between the VCC and the GND.
The 2nd layer of LV8702V motor driver module is
the GND layer, where the PGND area (upper part)
and the SGND areas (lower part) are completely
separated. The connecting point between the SGND
and the PGND is indicated by a red circle on the
IC−mounting surface in Fig 19. Arduino GNDs are
connected to the SGND area on the second layer.

4. Keep the lines which can be noise sources away from
other line.
Since LV8702V drives motors by PWM−current
chopping, the four output lines can be the source of
noise. For control signal lines, attention should be
paid to the STEP lines through which the pulsed
signal continues to be input during motor operation.
If these lines run in parallel with other signal lines,
noise may jump into the lines and cause malfunction.
Care must be taken if lines run across the area which
is right under the noise source on the layer which is
just above the layer the lines belong to. For example,
because four output lines are on the IC mounting
surface, signal lines must not run across the area on
the 2nd layer which is right under the output lines.
Conversely, the lines to which the current detection
resistors is connected needs to avoid the effect of
noise. If noise is applied to this line, the current
cannot be controlled correctly and malfunction of
the motor or abnormal driving noise may occur.

5. Soldering the metal surface of the IC to the board for
heat dissipation.
The back surface of LV8702V is partially
plastic−free, and the metal surface is exposed. A chip
is mounted on this metal inside the IC, and heat
generated by the chip is transferred to this metal
while driving a motor. By mounting this metal
surface on the board, heat dissipation capability of
the IC and the chip is improved. This mounting area
must be connected to GND, and any line other than
GND must not be laid out on any layer under this
area.

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
46

GND

IC

STEP

STEP

GND

Figure 19. Points to Note in Circuit Board Layouts

Current sense
resistor

Back surface
(Perspective from IC

mounted surface)

3rd layer

Connetion pin to the
GND of the Arduino

2nd layer

IC mounted surface

Output line

Power supply
(VM)

Control circuit
GND area

Power
GND area

Capacitor

Power supply
(VM)

GND
interconnection

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
47

BOARD SCHEMATICS

Motor Driver Module (LV8702VSLDGEVB)

Figure 20. LV8702VSLDGEVB Schematics

• R5 − 11, R18, and R19 are lands for pull−up resistors for
input terminals for setting functions.
Connect resistors when you don’t need to change function
settings and want to keep inputs High. Refer to the bill of
materials for the recommended specifications of the
resistors. These input terminals are connected to
pull−down resistors inside the IC. Therefore, if you want

to keep inputs Low, you do not need to customize the
PCB.

• The output motor current is determined by the DC input
voltage to the VREF terminal. Since Arduino Micro does
not have variable voltage DC output pins, the D6 pin is
used to output a pulse signal of 0 − 5 V, and the pulse signal
is converted into a variable DC voltage by R22 and C8.

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
48

• To set the output motor current to a fixed value, use
resistors for R16 and R17 and a jumper (0 � resistor) for
JP4 to determine the VREF voltage. The VREF voltage
and the output motor current are calculated by the
following equation.
The resistance values of R16 and R17 are recommended
to be several tens of k�.

VREF �
R17

R15 � R17
� 5 V

(eq. 1)

Output Current � VREF ÷ 5 ÷ 0.22 �
(eq. 2)

Note that the VREF voltage input range for LV8702V
is specified to 0 to 3 V.

• When the motor is stopped, the SST terminal
automatically operates to reduce the motor current. If the
STEP signal is not switched for a certain period (13 to
23 ms), LV8702V judges that the motor has stopped
operation and the SST terminal becomes Low level. If
R15 − 17 and JP4 are connected in this situation, the

VREF voltage will be Low and the motor current will be
reduced.
This function is undesirable for rotation at low speeds. To
disable this function remove R15. Though R15 is
installed at the time of shipment, this function is disabled
because R16, R17, and JP4 are not connected.
SST terminal of LV8702V is connected to the A5 pin so
that it can be monitored from the Arduino, but the API and
the GUI do not support monitoring of SST signals.
If you do not need to monitor the SST from the Arduino,
you can use the connector CN−8 on the baseboard to
arbitrarily use the A5 terminal after disconnecting the
SST terminal from A5 pins.
You can simply cut the pin (CN1A − 6: Refer to Fig. 20)
of the pinheader on the motor driver module to achieve
this disconnection.

• If you use the GUI, do not connect anything to R21. Any
installed resistor prevents the GUI from identifying the
type of the connected module.

Table 28. BILL OF MATERIALS FOR LV8702V MOTOR DRIVER MODULE (LV8702VSLDGEVB)

Comp. Code Qty Name Value Tolerance Size Manufacturer Product

IC1 1 Motor driver − − SSOP44J ON Semiconductor LV8702V

R1−2 2 Chip resistor 0.22��, 1 W ±5% 6432 (2512 Inch) KOA SR73W3AT**R22J

R3 1 Chip resistor 15 k�, 0.1 W ±5% 1005 (0402 Inch) KOA RK73B1ET**153J

R4 1 Chip resistor 100 k�, 0.1 W ±5% 1005 (0402 Inch) KOA RK73B1ET**104J

R5−11, R18−19 9 Chip resistor 47 k�, 0.1 W ±5% 1005 (0402 Inch) KOA RK73B1ET**473J

R12−14, R16 4 Chip resistor 47 k�, 0.1 W ±5% 1005 (0402 Inch) KOA RK73B1ET**473J

R15 1 Chip resistor 12 k�, 0.1 W ±5% 1005 (0402 Inch) KOA RK73B1ET**123J

R17 1 Chip resistor 15 k�, 0.1 W ±5% 1005 (0402 Inch) KOA RK73B1ET**153J

R20 1 Chip resistor 100 k�, 0.1 W ±5% 1005 (0402 Inch) KOA RK73B1ET**104J

(R21)

R22 1 Chip resistor 27 k� , 0.1 W ±5% 1005 (0402 Inch) KOA RK73B1ET**273J

JP1−3 3 Jumper 0��, 1 W ±20% 1005 (0402 Inch) KOA RK73Z1ET**

JP4 1 Jumper 0��, 1 W ±20% 1005 (0402 Inch) KOA RK73Z1ET**

C1 1 Electrolytic capacitor 10��F, 50 V ±20% 5 x 5.5 Wurth Electronik 865080642006

C2, C3, C5, C6, C8 5 Chip capacitor 0.1��F, 100 V ±10% 1005 (0402 Inch) Murata Manufacturing GRM155R62A104KE14D

C4 1 Chip capacitor 1000 pF, 50 V ±5% 1005 (0402 Inch) Murata Manufacturing GRM1555C1H102JA01J

C7 1 Chip capacitor 150 pF, 50 V ±10% 1005 (0402 Inch) Murata Manufacturing GRM1555C1H151JA01J

CN1A, 1B 1 Pin header 12 pins x 2 − 30.48 x 5.08 Wurth Electronik 61302421121

CN2 1 Pin header 12 pins − 30.48 x 2.54 Wurth Electronik 61301211121

PCB 1 PCB − 30.48 x 20.32

NOTE: Parts highlighted in yellow are not mounted at the time of product shipment.

http://www.onsemi.com/

LV8702VSLDGEVK

www.onsemi.com
49

Base Board (ONBB4AMGEVB)

Wurth Electronik

Wurth Electronik

Wurth Electronik Wurth Electronik

HIROSUGI

HIROSUGI

Wurth Electronik

Wurth Electronik

Wurth Electronik
694106301002

Wurth Electronik

FSS−41085−17

FSS−41085−17

ON Semiconductor

61301221821

61301211821

691243110004 691243110004691214110002S

691243110004

DC JACK

61300411121

860020674015
Wurth Electronik

1 2

CN6

1 2 3 4

CN7

1 2 3 4

CN5

1

2

3

4

CN8

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

CN4

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

CN1

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

CN2

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

CN3

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1

2

3

4

J2

[ON Semi LOGO]S1

[Pb_FREE]S2

[BATTERY DISPOSAL]S3

1

2

3

J1
D1

MBR230LSFT1G

C1

V
+

O
U
T
_
D

O
U
T
_
C

O
U
T
_
B

O
U
T
_
A

A5

A4

A3

A2

O
U
T
_
A

O
U
T
_
B

O
U
T
_
C

O
U
T
_
D

V
+

D
4

D
5

D
6

D
7

IO
8

IO
9

IO
1
0

IO
1
1

IO
1
2

IO
1
3

+
5
V

D
2

D
3

A
5

A
4

A
3

A
2

A
1

A
0

O
U
T
E

O
U
T
_
F

O
U
T
_
G

O
U
T
_
H

O
U
T
E

O
U
T
_
F

O
U
T
_
G

O
U
T
_
H

3
V
3

M
O
S
I

S
C
K

M
IS

O

D
2

D
3

D
4

D
5

D
6

D
7

IO
8

IO
9

IO
1
0

IO
1
1

IO
1
2

IO
1
3

M
O
S
I

S
C
K

M
IS

O

+
5
V

A
5

A
4

A
3

A
2

A
1

A
0

3
V
3

+5V

T
X

R
X

TX

RX

V
-

V-

V+

Figure 21. ONBB4AMGEVB Schematics

• The pins with the same names in the schematics are
connected by wiring.

• When the connector is inserted into the DC jack, the V−
of CN6 becomes open.
Therefore, even if another power supply is connected to
the CN6, it does not cause a failure.
At the same time, the voltage input from CN6 is disabled.
You cannot access the GND level from V−.
Please refer to the manufacturer’s site for details.

https://katalog.we−online.de/en/em/DC_RIGHT_ANG
LED_6_4_69410X301002?sid=c33324d235

• The power for the Arduino is supplied from the
USB−connector.
Power from the the USB−connector can also be supplied
from a smartphone charger during stand−alone operation.

• Arduino GND, J2 GND and GND of DC jack or V− of
CN6 are connected by inserting the motor driver module.

http://www.onsemi.com/
https://katalog.we-online.de/en/em/DC_RIGHT_ANGLED_6_4_69410X301002?sid=c33324d235
https://katalog.we-online.de/en/em/DC_RIGHT_ANGLED_6_4_69410X301002?sid=c33324d235

LV8702VSLDGEVK

www.onsemi.com
50

Table 29. BILL OF MATERIALS FOR THE BASE BOARD ONBB4AMGEVB

Comp. Code Qty. Name Value Tolerance Size Manufacturer Product

D1 1 Diode − − SOD123 ON Semiconductor MBR230LSFT1G

CN1, 2 2 Connectors for the
Arduino Micro

− − �1.02 x 17 − 2.54 pitc
h

HIROSUGI FSS−41085−17

CN3 1 Connectors for the
module

− − �1.02 x 12 x
2 lines − 2.54 pitch

Wurth Electronik 61302421821

CN4 1 Connectors for the
module

− − �1.02 x 12 − 2.54 pitc
h

Wurth Electronik 61301211821

CN5, 7, 8 3 Connectors for the
module

− − �1.1 x 4 − 3.5 pitch Wurth Electronik 691243110004

CN6 1 Connectors for
connection with the

power supply

− − �1.1 x 2 − 3.5 pitch Wurth Electronik 691214110002S

J1 1 DC jack − − 9.0 x 14.5 Wurth Electronik 694106301002

J2 1 UART pin header − − �1.1 x 4 − 2.54 pitc
h

Wurth Electronik 61300411121

C1 1 Electrolytic
capacitor

100��F, 50 V ±10% − 860020674015

PCB 1 PCB − − 80 x 60

When using a circuit board prepared by the user in place
of the base board, be sure to install an electrolytic capacitor
equivalent to C1 between the VCC and GND terminals. The

non−installation of the capacitor will cause damage to or
failure of the module.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

AND9826/D

ON Semiconductor is licensed by the Philips Corporation to carry the I2C bus protocol.

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

◊

http://www.onsemi.com/
www.onsemi.com/site/pdf/Patent-Marking.pdf

