
To learn more about onsemi™, please visit our website at
www.onsemi.com

ON Semiconductor

Is Now

onsemi and       and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

© Semiconductor Components Industries, LLC, 2017

June, 2018 − Rev. 1
1 Publication Order Number:

AND9675/D

AND9675/D

Workflow for an IoT Product

Detailed Example of a Development
Process for a Wireless Alarm System
based on Sigfox� Protocol

Introduction
In this application note a complete list of process steps is described

in order to develop a specific system in the IoT environment. In order
to make the description more practical the PIR sensor alarm example
is used.

The PIR motion sensor alarm is a product demo developed by
ON Semiconductor for detecting movement events and sending
messages on a cloud by means of Sigfox network. The following
picture shows the finished product. The alarm system is built around
two main ON Semiconductor devices: the AX−SFxx−API−y RF
microcontroller (Sigfox API stack SW version, xx representing the
Sigfox Radio Configuration Zone) and the NCS36000 passive infrared
(PIR) detector controller.

This alarm system is only intended for showing capabilities of
ON Semiconductor devices and cannot be considered as real
monitoring system for smart home applications. It has some
limitations that will be discussed in more details in the concept
analysis paragraph.

Process Flow
The main steps of the process followed for the development of the

PIR sensor alarm system are here summarized:
• From Concept Analysis to “System Requirements”, Specification

for HW and SW, included Mechanical Constraints
• HW/SW Development and First Prototype Development

• Testing. HW and SW Bug Tracking and Corrective Action
for Fixing Potential Issue

• SW Development for Certification Approval

• Product Prototype Testing

• CE−ETSI regulatory certification

• Sigfox Ready� and Sigfox Verified� Certification

• Final Production

Most of the steps are practical then they will not be discussed in the
document. The main part that will be treated are HW and SW
development and certification procedure.

www.onsemi.com

APPLICATION NOTE

Figure 1. ON Semiconductor Alarm System

http://www.onsemi.com/

AND9675/D

www.onsemi.com
2

CONCEPT ANALYSIS

System

Figure 2. Block Diagram, from Movement Detection to Remote Control through Sigfox Network

Scope and Behavior
The Alarm system is used for monitoring limited

environment, like rooms, detecting movement events. In
order to be fully working, it should be placed in an area
covered by Sigfox network.

When an event is recognized, a Sigfox message is sent on
the cloud and it can be read back by the user accessing the
Sigfox backend or, could be read developing a web or
mobile application getting access to the SIGFOX backend
server.

Visual feedbacks are provided to the user in order to
understand the system activity by means of LEDs: yellow,
red and green.
• Yellow is turning ON whenever the PIR sensor detects

a movement.
• Red is turning ON when a radio communication is

performed.
• Green is turning ON as result of the Sigfox

communication: blinking when error, hold on for
a while when no error.

Sigfox Transmission Specification
Since Sigfox contracts provides up to 140 messages per

day in uplink and since the PIR sensor could detect a much
higher number of events per day, a rule for avoiding
transmission saturation has been considered. Thus the SW
will send up to 6 messages per hour where the message
content is slightly different according to the timing. In fact,
the number of events detected by the PIR sensor during the
silent period will be recorded and when the one hour time
event is triggered and a further movement is detected,
a Sigfox communication with the PIR events’ counter is sent
out on the cloud (always 1st message of the next hour). Only
after the first message of the new hour the event counter is
reset.

For sake of simplicity the following picture will show the
concept.

http://www.onsemi.com/

AND9675/D

www.onsemi.com
3

Figure 3. Alarm System Behavior

Power Management, Supply Voltage and Battery Life
In order to maximize the lifetime of the Alarm system, the

power consumption has to be minimized as much as
possible. Therefore the RF microcontroller is kept in sleep
mode when no PIR events are detected. To entering the low
power consumption stage, the management of the event has
to be successfully completed. The selection of sleep mode,
instead of deep sleep, is preferred because important
functionalities are running during low power stage, and they
can issue a wake up event to the CPU.

System supply voltage is driven by the most demanding
device, in this case the PIR sensor, where the minimum
supply voltage required is 3 V, therefore a good trade−off for
meeting both voltage level with enough energy capability
and minimizing mechanical occupancy is 2 AAA batteries.
By using a boost regulator, the battery life time can be
extended by regulation of the voltage at 3 V while the battery

is being discharged. Even if it is out of the scope of this
document, it would be possible to reduce the system power
consumption removing all the LEDs since a feedback on
Sigfox is always available.

Here a quick calculation of battery life is proposed
considering the Sigfox transmission need.

Table 1.

Value Unit

Sigfox transmission 51 mA

System in sleep mode 91 �A

Battery capability 1500 mAh

Time for a transmission 6 sec

Number of Sigfox messages 140 Msg per day

Considering the worst case scenario (see Table 2):

Table 2.

2 AAA Alkaline Capacity 1500 mAh 3600 s/h 5400.00 C

Sigfox TX (140 messages) 51 mA 6 s 42.84 C/day

Sleep Charge per day 91 �A 85560 s 7.79 C/day

OOB frame transmission 0.28 C/day

Total Charge Consumption 50.91 C/day

Battery Life 106.08 day

http://www.onsemi.com/

AND9675/D

www.onsemi.com
4

Mechanical Aspects
The selection of the mechanical enclosure is another

critical point that will drive next phases. A very basic
housing has been selected for this project: rectangular
section with enough height to host AAA batteries, lens and
PCB thickness. Moreover PCB thickness is a constraint

coming from the Sigfox reference design. The housing
length is selected in order to host the battery and the antenna
length.

As soon as a box has been selected, its drawing will drive
the PCB shaping on which the HW design has to properly fit.

HW DESIGN

The schematic has been a relative simple task since it was
generated by merging two existing schematics. Therefore it
has been used.
• The reference design for the radio part [3];

• The schematic developed for PIR sensor controller
application note, refer to [4].
More info regarding the controller can be fetched in
[5][6].

For finalizing the schematic following the concept
described in the previous chapter, some HW modifications
were needed to the existing schematics:

• A connection between the PIR output controller to an
IO of the RF micro (the selected IO has to be able of
interrupt generation for waking up the micro from sleep
mode).

• A green LED to a micro IO.

• A power switch for turning on the alarm system only
when is really needed and preserve battery life.

Figure 4. Schematic Modifications for Alarm System

http://www.onsemi.com/

AND9675/D

www.onsemi.com
5

In order to avoid potential issues on the RF side, here is a
list of hints for the PCB layout:

1. RF performances are affected by the ground plane
design, it is necessary to maximize his size, it has

to be present both on top and bottom side and keep
the two sections connected.

Figure 5. Bottom and Top Ground Plane of Alarm System

Figure 5 is showing the shape of the ground plane of the
alarm system. As it is clearly visible, it is spread over the
entire PCB and it is surrounding all the components expect
the antenna portion. Top and bottom are connected through
the ground pad of the battery connector.

Having such a big plane, it is important to add thermal via
in order to make the PCB assembling easy especially for

components that foreseen big contacts, like battery holders.
The RF portion doesn’t have to be modified; its portion is
already provided with the necessary thermal via if the
reference design is followed.

2. The antenna has to be ground plane free.

Figure 6. Top and Bottom Side of the Spring Antenna

Figure 6 is showing the connection of the Antenna to the
top side. The antenna selected is a single ended antenna. The
track is coming from the matching impedance section. In
order to avoid any potential short circuit issue between
antenna pad and ground plane, the distance between them
can be increased. Mostly it is depending on the PCB
manufacturer capabilities to achieve such challenging
clearance.

Antenna has to be selected according to the
communication specification: carrier frequency at 869 MHz

and matching impedance of 50 �. It has been here selected
a spring antenna, this is a good compromise between costs
and performances (2.1 VSWR).

3. PCB has to be 1 mm thick made by FR4.

Once layout and BOM are finalized, a prototyping phase
can be performed for validation.

http://www.onsemi.com/

AND9675/D

www.onsemi.com
6

SW DESIGN

The high level behavior of the SW is here proposed:

Figure 7. SW Flow Diagram, High Level

Preliminary Info
The SW design phase can start together with the HW

design phase.
In order to write a SW for the AX8052F143 SoC it is

recommended to use a specific IDE environment. It can be
downloaded from the ON Semiconductor website; a link for
selecting the suitable IDE according to the available OS is
provided in [7].

The installed AS8035−IDE software package in [7] is so
called “CodeBlocks”, an open source, cross platform IDE.
The reference version for the development is 1.17. This
version is pre−configured to properly operate the RF micro,
thus compiler, linker and debugger doesn’t require any
additional setup, as long as it is enough the free compiler
provided, SDCC. However the Alarm system project is
developed using a different compiler, IAR, therefore it is
required to procure a license for 8051 core from other
vendors. In this application note is it present a dedicated
section for setting up the IDE environment for using IAR
compiler.

Since this development it is based on Sigfox
communication and since it is required to use only
a microcontroller in the application, a specific SoC it is
needed: AX−SFxx−API. This chip is not provided with
Sigfox firmware stack, but any registered customer can
download from On Semiconductor homepage.

The API acronym means Application Programming
Interface, once downloaded the firmware, the SIGFOX
library will be available and by means of functions calls, it
will be possible to start SIGFOX communication with ease.

Starting with an Example Project:
Toggle an LED by Wakeup Time Event

In order to ease the understanding of the Alarm system
application, it is better to start from an example project:
toggling an LED when a wake up time event is issued and
as soon as the task is completed put the micro into sleep
mode. This application is completely developed by means of
ready to use API functions. To get the original source code
of the PIR Alarm System please contact your local sales
support at www.osnemi.com.

Sleep Mode
When this low power mode is entered, not all the

microcontroller peripherals will be turned off. Only the
GPIO and the System Controller are kept awake. Basically
the system controller will allow to have one of the two
wakeup timer resources always running, thus as soon as an
interrupt is generated by this HW resource, the micro is
forced to wake up and the program counter will start fetching
instruction from location 0 of the program memory. Sleep
mode can be considered as an hardware reset and the info
regarding what caused the wakeup can be retrieved reading
the PCON register. For more info, see Table 21 in [2].

As said, restoring the micro is depending on the capability
of generating timer interrupt, thus the wakeup timer header
file libmftimer.h must be included in the project.

Wake Up Timer: Time Event
The system controller manages two wake−up timers.

They work at different frequencies but the behavior is the
same. Their frequency is selected at initialization stage via
SW.
wtimer0 is recognized as the low power timer since it is

connected to the low power oscillator, therefore is working
at lower frequency. Both this example and the Alarm system
application have been initialized with a frequency of 640 Hz.
This is the minimum frequency that can be achieved and the
supply current required by wtimer0 is around 210 nA, but
this value represents only the low power oscillator need.

When the wtimer skeleton code is used in an application,
even if no events are scheduled in the SW, there will always
be a wake up event generated by the wtimer0 because of
implementation of the wtimer strategy. This time event is
fixed at 96 seconds. Of course it will be more visible when
the micro is holding a low power mode, and the supply
current is monitored.

The skeleton code consists of:
1. Wake up timer hardware initialization: selection of

clock source;
2. Wake up timer software initialization;
3. Wake up timer call to the consumer queue;

http://www.onsemi.com/
http://www.onsemi.com

AND9675/D

www.onsemi.com
7

4. Wake up timer send to idle mode, sleep mode and
waiting for a wake up time event.

Here the code for toggling the RED led and skeleton code
is proposed.

This SW is written considering the Sigfox reference
design and can be used without any issue with the mini−dvk
evaluation board or with the Sigfox goodie PCB presented
in the previous chapter “HW Design”.

Include

#include <ax8052.h> /// Register declaration for the RF micro

#include <libmftypes.h> /// libmf datatype definition and convenient function

#include <libmfflash.h> /// flash memory management, like calibration

#include <libmfwtimer.h> /// wake up timer structure definition

#include <libminikitleds.h> /// led management according to the mini-dvk

Initialization

uint8_t _hw_init_AX8052(void)

{

 DPS = 0; /// Data pointer select for XRAM reading

 wtimer0_setclksrc(CLKSRC_LPOSC, 1); /// Hardware initialization of wtimer0

 wtimer1_setclksrc(CLKSRC_FRCOSC, 7); /// Hardware initialization of wtimer1

 PORTA = 0xFF; /// When 1, pull up resistor enabled.

 PORTB = 0xFD | (PINB & LED_MASK);

 PORTC = 0xFF;

 PORTR = 0xCB;

 DIRA = 0x00; /// When 1, pin direction output

 DIRB = 0x06; /// PB1 = LED, PB2 = TCXO ON/OFF

 DIRC = 0x00;

 DIRR = 0x15;

 ANALOGA = 0x18; /// When 1, PORTA pin set to Analog

 MISCCTRL |= 0x02; /// Its selection depends on the HW used.

 /// if bit 1 is set (value = 0x02) =>

 /// NO crystal connected to PA0,PA1.

 EIE = 0x00; /// Peripheral interrupt valid through EA

 E2IE = 0x00; /// Additional peripheral interrupt

 IE = 0x00; /// Interrupts that don't require EA enabled

 GPIOENABLE = 1; /// Enabling the IOs.

 if (PCON & 0x40) /// Checking bit 6 for reset condition:

 /// if 1, wake up from sleep or deep sleep

 return 1;

 return 0; /// if 0, wake up from first power up.

}

In the main it is described how to call the remaining
wtimer functions:

http://www.onsemi.com/

AND9675/D

www.onsemi.com
8

Main loop:

void main(void)

{

 _hw_init_AX8052(); /// micro HW initialization

 flash_apply_calibration(); /// fetching data from the flash CALIB section for

 /// initializing correctly the HW

 CLKCON = 0x00; /// CPU Clock configuration.

 wtimer_init(); /// Initialization of the wake up timer HW resource

 /// and enabling wakeup interrupt

 if (!(PCON & 0x40)) /// At the first power on of the board, the "if" body

 { /// is executed.

 /// A wtimer element of a wtimer0/1 queue is defined by a wait time and a function call.

 /// wtdesc is a descriptor of the queue defined as: struct wtimer_desc __xdata wtdesc;

 wtdesc.time = 320; /// wait time in timer0 tick before Fnc2call execution.

 wtdesc.handler = Fnc2call; /// Fnc2call is the address where the function is written.

 wtimer0_addrelative(&wtdesc); /// adding the wtdesc element to the wtimer0 queue

 }

 EA = 1; /// Enabling global interrupt

 PCON = 0x0C; /// Reteining both XRAM location

 for (;;) { /// main loop

 wtimer_runcallbacks(); /// when wait time is over, wtdesc handler is performed

/// fecthing a queue element means remove it. If it is ///de

sired to execute it multiple time

 /// it has to be instatiate again.

 EA = 0; /// Disabling global interrupt

 {

 uint8_t flg;

 flg = WTFLAG_CANSTANDBY;/// setting a flag for requesting to enter in standby

 flg |= WTFLAG_CANSLEEP; /// and requesting to sleep

 wtimer_idle(flg); /// wtimer_idle will choose what low power status to enter.

 }

 EA = 1; /// if in stanby, micro will recover from here

 /// otherwise it will start over from _hw_init_AX8052().

 }

}

All written so far doesn’t explain how to achieve the goal:
toggle the red led every 200 ms, this is done in the Fnc2call
handler.

http://www.onsemi.com/

AND9675/D

www.onsemi.com
9

/// Body of the handler related to the queue element wtdesc.

void Fnc2call(struct wtimer_desc __xdata *desc)

{

 desc; /// avoiding a warning when compiling

 wtdesc.time += 320; /// re-definition of the queue element.

 /// it is not needed to initialize the handler

 /// again since no-one canceled it.

 wtimer0_addabsolute(&wtdesc); /// adding the element on the wtimer0 queue

 led0_toggle(); /// toggling the RED led

}

A timed queue element can be added using two different
approaches, by absolute value or by relative value. Also the
method used for adding the element to the wtimer0 queue
is different: wtimer0_addabsolute,
wtimer0_addrelative.

The methods are slightly different; the relative one will
guarantee more precise result since it is corrected with the
actual time elapsed. On the other hand, the absolute method
is relying on the variable time, which is a field of the
descriptor, and it is not taking care about the real elapsing
time. The execution time difference is caused by the delay
between the event trigger generation and the function
callback call. Both the method cannot be considered strictly
real time event because of this time delay.

Remark
Although the wtimer0 is working at 640 Hz, the CPU

clock is set at a different frequency, CLKCON is indeed
initialized with 0 that represents the internal Fast RC
oscillator with a frequency of 20 MHz. Therefore the latency
for executing the callback task is not dramatically high but
a delay will be anyway present.

Ascertain that a delay is present by implementation; the
just introduced software structure will guarantee a very
limited stack memory allocation for interrupt management.
In fact the function calls are executed in main loop. What is
actually left to the wtimer interrupt is:
• Comparison between queue element timings versus the
wtimer0 counter.

• Any queue element that doesn’t have to wait any longer
will be added to the pending queue.

• The pending queue is then managed in the
wtimer_runcallbacks function.

Wake Up Timer: Asynchronous Event
Besides the timed event, already discussed, the wtimer

structure manages also asynchronous event. An
asynchronous event is an unpredictable change in any of the
monitored peripherals; for example pushing a button is an
asynchronous action performed by an external user on
a pre−defined IO where the button is linked to.
Asynchronous means also that the micro should respond to
this event immediately performing some specified set of
instructions. Since the intention is still to keep the interrupt
routine as small as possible, the event will cause the
generation of a queue element that will be added at the first
position of the pending queue, therefore they will be called
by the wtimer_runcallback function immediately.

What is actually needed is specify the function to be called
and pass its handler to the callback queue element. The
following SW shows how reacting to a push button event
turning on the red led and, inside this function call, trigger
a timed event for blinking the red led for a specified number
of times.

The code for adding an asynchronous call is pretty much
similar to what described in the previous section, but the
type qualifier of the queue object is different. On the other
hand, the HW initialization function is the same of the
previous example.

http://www.onsemi.com/

AND9675/D

www.onsemi.com
10

Initialization

uint8_t _hw_init_AX8052(void)

{

 DPS = 0; /// data pointer selection, XRAM access

 wtimer0_setclksrc(CLKSRC_LPOSC, 1); /// clock selection for wtimer0

 wtimer1_setclksrc(CLKSRC_FRCOSC, 7); /// clock selection for wtimer1

 PORTA = 0xFF; /// enable pull up on PORTA

 PORTB = 0xFD | (PINB & LED_MASK); /// enable pull up but taking care about

 /// B1 status when recovering from sleep

 PORTC = 0xFF; /// enable pull up

 PORTR = 0xCB; /// not really needed for this example

 DIRA = 0x00; /// all input

 DIRB = 0x06; /// B1 and B2 output

 DIRC = 0x00; /// all input

 DIRR = 0x15; /// radio init

 ANALOGA = 0x18; /// A[3,4] analog

 MISCCTRL |= 0x02; /// no crystal on A[0,1]

 EIE = 0x00; /// Peripheral interrupt valid through EA

 E2IE = 0x00; /// Additional peripheral interrupt

 IE = 0x00; /// Interrupts that don't require EA enabled

 GPIOENABLE = 1; /// Enabling the IOs.

 if (PCON & 0x40) /// Checking bit 6 for reset condition:

 /// if 1, wake up from sleep or deep sleep

 return warmstart;

 return coldstart; /// if 0, wake up from first power up.

}

Let’s just remark here that when the micro is waking up
from sleep mode, the SW will start again from the beginning
of the initialization function and, in order to avoid unwanted
change on output pins (like the red led of this case) it is
needed to read their actual status and considering in the IO

initialization. During sleep mode IOs are frozen, this is why
it is present | (PINB & LED_MASK).

The SW will require some definition and global variable
declaration in order to work properly.

/// --- List of constructor for wtimer queue

 struct wtimer_callback __xdata aCallBk_pButt; /// async push button queue element descriptor

 struct wtimer_desc __xdata tCallBk_led; /// timed queue element descriptor

/// --- Definition for Interrupt management

 #define INPUT_INTCHG INTCHGC /// Interrupt on Port C change

 #define INPUT_PIN PINC /// which pin to monitor

 #define PB_MASK 0x10 /// mask for push button reading, C[4]

 #define LED_MASK 0x02 /// red Led position on B[1]

/// --- Time constant based on wtimer0 tick: frequency @ 640hz

 #define TIME_FIRST 640 /// wait time before timed queue blinking

 #define TIME_BLINKING 128 /// half period for blinking

 #define BLINK_REPET 40 /// number of times the led will blink

/// --- Function prototype

 void PusButtonEvent(struct wtimer_callback __xdata *callbk); /// asynch event

 void RedLedToggling(struct wtimer_desc __xdata *desc); /// timed event

http://www.onsemi.com/

AND9675/D

www.onsemi.com
11

Main loop:

void main(void)

{

 static uint8_t __data pinState = 0xFF; /// default value, all pin pull-up

 /// __data: pinState allocated in IRAM

 /// Internal RAM is the fastest available.

 _hw_init_AX8052(); /// micro HW initialization

 flash_apply_calibration(); /// fetching data from the flash CALIB section for

 CLKCON = 0x00; /// Clock configuration.

 wtimer_init(); /// Initialization of the wake up timer HW resource

 /// and enabling wakeup interrupt

 EA = 1; /// Enabling global interrupt

 INPUT_INTCHG |= PB_MASK; /// Enabling interrupt on change

 PCON = 0x0C; /// keep both XRAM block

 for (;;) /// main loop

 {

 wtimer_runcallbacks(); /// execution of the queue element

 /// --- Start of push button event managment

 EA = 0; /// disable global interrupt to make the current code atomic

 {

 uint8_t inPin;

 { /// the declaration with this brackets means…

 uint8_t pB; /// that pB usage is limited to this section.

 pB = INPUT_PIN; /// reading the PIN C status

 inPin = pinState & ~pB; /// if no change on C4, PINC is 1, inPin = 0

 pinState = pB; /// pinState is 0

 }

 if (inPin & PB_MASK) /// as long as C4 is not changing, "if" is 0

 { /// when C4 is 0, the body is executed

 EA = 1; /// re-enabling global interrupt

 aCallBk_pButt.handler = PusButtonEvent; /// passing the handler

 wtimer_add_callback(&aCallBk_pButt); /// adding to the pending queue

 continue; /// jumping back to the "for" instruction and

 /// performing new check until the C4 state is

 /// set back to 1 again.

 }

 IE_3 = 1; /// Enabling GPIO interrupt. Wakeup the micro

 /// when a new button event is issued.

 }

 /// --- End of push button event management

http://www.onsemi.com/

AND9675/D

www.onsemi.com
12

 {

 uint8_t flg = WTFLAG_CANSTANDBY; /// flag definition for low power mode stage

 flg |= WTFLAG_CANSLEEP; /// asking also to go to sleep

 wtimer_idle(flg); /// wtimer will take care about going to sleep

 }

 IE_3 = 0; /// in case the micro is in standby, the micro will keep

 /// executing from here. The GPIO interrupt is removed and

 /// reading the button state will be performed correctly.

 EA = 1; /// enabling of global interrupt

 }

}

In order to read a push button, this SW makes use of two
main instructions, disable of the global interrupt flag and
continue instruction. A continue statement prevent the
execution of the next portion of the code. It is actually tell the
program counter to jump back to the nearest loop condition,
in this case the for loop.

In order to enable the if body where continue is
introduced, a pin change has to happen. The code will keep

looping between for and continue until a second pin
change is happening.

When working with push buttons, they introduce spurious
on/off repetitions, normally identify as bouncing effect. In
order to avoid those glitches, a flag could be defined that will
prevent the SW to execute multiple time the
wtimer_add_callback instruction.

Regarding the function callback body:

http://www.onsemi.com/

AND9675/D

www.onsemi.com
13

/// --

/// Body of the handler related to the asynchronous queue element

/// called when the push button event is recognized

/// --

void PusButtonEvent(struct wtimer_callback __xdata *callbk)

{

 led0_set(); /// set the red led

 if (tCallBk_led.handler == 0) /// if there is no handler specified in queue

 {

 tCallBk_led.handler = RedLedToggling; /// passing the handler

 wtimer0_remove(&tCallBk_led); /// ensuring that no timed queue element is present

 tCallBk_led.time += TIME_FIRST; /// definition of the timed-queue element.

 wtimer0_addabsolute(&tCallBk_led); /// adding to the wtimer0 queue again

 }

}

/// --

/// Body of the handler related to the asynchronous queue element

/// called when the push button event is recognized

/// --

void RedLedToggling(struct wtimer_desc __xdata *desc)

{

 static uint8_t cntBlink = 0; /// local counter var, keep the value

 /// since is defined static

 led0_toggle(); /// request of led toggling

 cntBlink = cntBlink + 1; /// updating the counter

 if (cntBlink <= BLINK_REPET) /// check if the counter is below threshold

 {

 tCallBk_led.time += TIME_BLINKING; /// passing the new time

 wtimer0_addabsolute(&tCallBk_led); /// add a new entry in the queue

 }

 if (cntBlink > BLINK_REPET) /// when counter reach the threshold

 {

 led0_off(); /// ensuring the led is off

 tCallBk_led.handler = 0; /// removing the handler

 cntBlink = 0; /// resetting the counter

 }

}

This approach can be easily applied to the Alarm system
developed for the Sigfox Goodie replacing the push button
event with the pin that is coming from the NCS36000
controller.

Alarm System SW Behavior
The Goodie SW makes extensively use of the same SW

structure analyzed in the previous paragraphs. Multiple
timed queue elements are defined in order to achieve the
concept description provided in the previous chapter
“Concept Analysis”, therefore there will be:

• A queue timed element for managing the 1 hour event
for triggering new Sigfox transmission,

• A queue timed element for blinking the green led if any
error on the Sigfox communication,

• A queue timed element for green led management when
no error on the communication,

• A queue timed element for enabling again the reading
of the PIR sensor after sending a Sigfox message.
20 seconds of blind time is foreseen for avoiding the

http://www.onsemi.com/

AND9675/D

www.onsemi.com
14

management of movement detection issued by the PIR
sensor due to EMI noise during radio transmission.

• A callback on asynchronous event for managing the
detection of a movement.

The only added complexity is the management of the
Sigfox communication and the interaction with the API
stack. Moreover, by the time when this SW has been written
some additional precautions have to be taken for letting the
radio go to sleep properly. This stage is needed to achieve the
low power condition required, supply current fixed at
90 �A.

ON Semiconductor provides convenient API functions to
easily set up a Sigfox transmission. Those are the functions
used in the SW:

1. ONSEMI_initialize(ONSEMI_INIT_CALIBRA
TE_LPOSC |

ONSEMI_INIT_CALIBRATE_FRCOSC);

2. ONSEMI_send_frame(transmit_data, 7,
0, false);

3. ONSEMI_cansleep()

The first one is needed for initializing the HW properly. It
will perform something similar to the _hw_init_AX8052
plus the radio part.

The second one is actually responsible for the Sigfox
communication. This function is blocking, therefore the SW
execution is stuck here until the transmission is over.

transmit_data is the array where the message is stored,
it will be sent to the Sigfox network, 7 is the number of byte
in TX, 0 the number of bytes in RX, if downlink is foreseen,
but in this case its flag is false. More detail about how it
works can be found in the onsemi_api.h header file.

When the communication is over, the radio part is no
longer needed and the send frame should complete his task
setting the radio into deep sleep mode. Actually two more
instructions have been added to ensure that this low power
condition is reached:
• ax5043_enter_deepsleep();

• SCRATCH3 = 0x01; ///does

POWER_STATE_RADIO =

POWER_STATE_RADIO_DEEPSLEEP;

The third instruction is needed for checking if the
microcontroller can go to sleep, therefore it is used in the
main loop before the wtimer_idle call.

Setup Build Option for the Project
In case of unexpected building message errors will be

shown on the Code::Blocks logs window, it is maybe
possible that the build option are not properly set. In this case
the easiest way to find out what is going wrong is generating
a blank new project selecting the Axsem AX8052

project template among all the available options. After
entering the desired project name, Code::Blocks will ask to
select the compiler.

Figure 8. Compiler Selection

Pick the one that was causing trouble on the existing
project and press “Next”.

http://www.onsemi.com/

AND9675/D

www.onsemi.com
15

Figure 9. Board Selection

Besides the board selection, last entry of the current
window, leave the default values unchanged, and then press
“Finish”.

An example project is created.

Try to build it and verify if errors are shown in the Build
Messages window.

If you get an error like this, most likely it is just a matter
of wrong location for addressing library files.

Figure 10. Build Failure Due to Wrong Link to Library File

All is needed is navigate into the “Build options” and
update the link libraries location.

Figure 11. Build Options Location

When opening the window, be sure to select the project
name on the left column in order to have a unique option set

both for Debug and Release version. If needed, further

http://www.onsemi.com/

AND9675/D

www.onsemi.com
16

options can then be added separately under Debug and
Release version.

Figure 12. Build Options

Go to linker setting and fix the libraries location editing
the path according the user folder.

Figure 13. Link Libraries Location

When done, no further build error messages should be
displayed on the Log window.

http://www.onsemi.com/

AND9675/D

www.onsemi.com
17

Figure 14. Compiled Successfully

DEVICE CERTIFICATION

The alarm system was developed to demonstrate a Sigfox
device as a wireless application for the mass production,
thus two types of certifications are necessary to launch the
Sigfox device as “off the shelf product” on the market.

1. Sigfox SA requires Sigfox Certification to access
the Sigfox network with following certification
types:
• Sigfox Verified� certification
• Sigfox Ready� certification

2. Regulatory Compliance Certification governed
at each country or region before putting a device
into its market
• CE Mark in Europe, FCC in North America;

ARIB in Japan, etc.

In general, the Sigfox certification is carried out by Sigfox
or its accredited test houses and will not include regulatory
compliance certification like CE marking in Europe or FCC
in the USA. It is recommended to consult Sigfox to plan the
Sigfox certification. Detailed information about the Sigfox
certification requirement and process can be found
in [10].The Sigfox certification plan is illustrated in the
following certification flow:

Figure 15. Sigfox Certification Plan

http://www.onsemi.com/

AND9675/D

www.onsemi.com
18

Sigfox Certification
The Sigfox Verified� certification qualifies the Sigfox

protocol and the RF modem performance and Sigfox
Ready� certification qualifies the end product.

The alarm system with the AX8052F143 SoC is already
Sigfox Verified and Sigfox Ready certified device.

The AX−SFxx−API−y SoCs with respective development
kits (DVK) are already Sigfox Verified and Sigfox Ready
certified (see Table 3) so that the customer, OEM’s who
develop the end product for the mass market based on the
reference design of the DVKs can reuse the Sigfox Ready
certification under the similarity rules described in [3].

Table 3. OVERVIEW OF AX−SFxx SIGFOX CERTIFICATION

Radio Configuration Zone (RCZ) Frequency AX8052F143 + API Sigfox Verified Development Kit Sigfox Ready

RCZ1: EMEA 868 MHz AX−SFEU−API DVK−SFEU−API−1−GEVK

RCZ2: US/Latin America 902 MHz AX−SFUS−API DVK−SFUS−API−1−GEVK

RCZ3/7: Japan/Korea 923 MHz AX−SFJK−API DVK−SFJK−API−1−GEVK

RCZ4: Australia/NZ 915 MHz AX−SFAZ−API DVK−SFAZ−API−1−GEVK

The Regulatory Compliance Standards
Since the Alarm System is intended to be used in Europe,

the ETSI is the controlling organization that regulates the
usage of RF equipment and the EN 300 220−1 is the
reference standard.

In Europe the access to the 863−870 MHz is subject to
ETSI 300−220 regulation and is under scope of RED. In the

United States, the Federal Communications Commission
(FCC) the access to the 902−928MHz band, the FCC part
15−247. Generally, AX−SFxx−API−y SOC is compliant to
the each regulatory compliance standards within the RCZ.

The following table shows an overview of the SIGFOX
AX−SFxx−API−y SOC and relevant regulatory compliance
standards worldwide.

Table 4. SIGFOX AX−Sfxx REGULATORY COMPLIANCE STANDARDS

Radio Configuration Zone (RCZ) Frequency Regional Regulatory Compliance Development Kit

RCZ1: EMEA 868 MHz CE (ETSI) DVK−SFEU−API−1−GEVK

RCZ2: US/Latin America 902 MHz FCC DVK−SFUS−API−1−GEVK

RCZ3: Japan 923 MHz ARIB STD−T108 DVK−SFJK−API−1−GEVK

RCZ4: Australia/NZ 915 MHz AS/NZS 4268 DVK−SFAZ−API−1−GEVK

AX−SFxx−API−y is designed and specified for SIGFOX
wireless application using the unlicensed ISM/SRD band
worldwide. In order to produce a compliant application or
products, the vendor or manufacturer should consider the
following guidelines for the final regulatory compliance
certification of respective region.
• Consider the schematic, layout design and external

component selection provided by the reference design
board of ON Semiconductor

• Place any decoupling capacitors close to the IC

• The printed circuitry board should have a solid ground
plane in the RF section

• Check the RF output matching network recommend in
the datasheet [2] with the optional filter stage to
suppress TX harmonic

• Check the proper RF configuration mode with AT
command described in [2]

• Ensure ability of RF measurement equipment like
Spectrum Analyzer/Signal Generator

• Ensure minimum of reflection and interference−free
test environment

A sanity check or a pre−testing prior to the accredited
regulatory compliant test procedure is recommended to
ensure that the device under test operate properly and meets
the compliant test requirements under the specified test
conditions.

The figure below shows a typical conducted transmitter
test setup as an example for the sanity check according to the
EN 300 200−1 carried out at EMC Testing Laboratory at
Slovak University of Technology with AX−SFEU Sigfox
shield.

http://www.onsemi.com/

AND9675/D

www.onsemi.com
19

Figure 16. Typical Conducted Transmitter Setup

Figure 17. Typical RF Carrier Frequency Monitored with Spectrum Analyzer

http://www.onsemi.com/

AND9675/D

www.onsemi.com
20

Figure 18. Summary of Sanity Check for TX Test

A typical test description of spurious conducted emission
according to the FCC part 15.247 compliance requirement
performed at the FCC accredited test laboratory Cetecom in
Germany with the US version of AX8052F143 is illustrated
as following:

Description:
Measurement of the conducted spurious emissions in

transmit mode. The EUT is set to single channel mode. The
measurement is repeated for low, mid and high channel.

Settings:

Settings

EUT Set the output carrier channel
• AT$IF=902104000
Send modulated (pseudo−)random pattern with
−1 and disable pattern testmode with 1
• AT$CB=−1,1
Repeat for mid and high channel

Spectrum
Analyzer

• Span = Low Band Edge 902 MHz; Upper
Band Edge 928 MHz
• RBW = 300 kHz (f < 1 GHz);
 = 3 MHz (f > 1 GHz)
• VBW = 10/100 kHz (f < 1 GHz)
 = 1 MHz (f > 1 GHz)
• Detector function peak
• Trace = max hold
• Sweep Time = Auto

Limits:
20 dB below the carrier signal

Results:
No spurious emission detected below 1 GHz, − 36 dBc

above 1 GHz

http://www.onsemi.com/

AND9675/D

www.onsemi.com
21

Figure 19. Spurious Conducted Emission Below and Above 1 GHz

The complete regulatory compliant test reports for the
AX8052F143 all over by the Sigfox defined Radio
Configuration Zone are available in [12].

As above mentioned, the required regulatory compliant
standards are treated differently by region or countries. In
order to sell the final product within the European market,
the final product have to be compliant to all application
specific EU directives and standards to get the CE

certification. The alarm system was developed to
demonstrate a final Sigfox application and provide design
example as reference for the customers who intend to
develop a similar application for the market. In this case, the
customer need to consider the regulatory compliance
standard according to the Radio Equipment Directive
(RED) and CE certification for the European market in
addition to the Sigfox Ready Certification.

SIGFOX ONLINE PLATFORM

With the development of the PIR Alarm System, a process
flow of a Sigfox application from hardware and software
development up to the Sigfox Certification and regulatory
compliant test scenario has been demonstrated to launch
a Sigfox application on the mass market.

The Sigfox online platform Build.Sigfox.com provides
further useful information for the Sigfox application
developers with following features:

• A guide for each device development step which is
continuously updated on user experience

• A single and centralized document resource center,
populated and maintained by Sigfox

• Support for device development & tooling

• Access to re−usable designs

• Contextualization of some products and companies of
Sigfox Partner Network

http://www.onsemi.com/

AND9675/D

www.onsemi.com
22

REFERENCES

[1] ON Semiconductor web page regarding the RF micro
http://www.onsemi.com/PowerSolutions/product.do?
id=AX8052F143

[2] RF Micro Datasheet: AX8052F143−D; AX−SFxx in
www.onsemi.com

[3] Reference Design for a Sigfox ready board:
DVK−SFEU−1−GEVK Combination AX−Sigfox
RefDesign in www.onsemi.com,
https://resources.sigfox.com/document/sigfox−ready
−similarity−rules

[4] Schematic for PIR sensor controller:
NCS36000GEVB Schematic in www.onsemi.com

[5] Regarding the PIR
http://www.onsemi.com/PowerSolutions/product.do?
id=NCS36000

[6] Application Note for PIR sensor controller:
EVBUM2304/D

[7] http://www.onsemi.com/PowerSolutions/supportDoc
.do?type=software&rpn=AX8052F143

[8] Libmf (AX 8052 Support Library).pdf

[9] Standard for RF communication in the European
countries: EN 300 220−1

[10] http://makers.sigfox.com/getting−started/;
https://resources.sigfox.com/document/whycertificati
on

[11] DA−00−705A1

[12] CTC−SFAZ.pdf; CTC_SFJK.pdf; EMCKP2979A
ON Semiconductors_Sigfox_v1−1−0.pdf;
SFUS_FCC_1−2318_16−01−02.pdf

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81−3−5817−1050

AND9675/D

Sigfox is a registered trademark of Sigfox SARL.
Sigfox Ready and Sigfox Verified are trademarks of Sigfox SARL.

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

◊

http://www.onsemi.com/
http://www.onsemi.com/PowerSolutions/product.do?id=AX8052F143
http://www.onsemi.com/PowerSolutions/product.do?id=AX8052F143
http://www.onsemi.com
http://www.onsemi.com
https://resources.sigfox.com/document/sigfox-ready-similarity-rules
https://resources.sigfox.com/document/sigfox-ready-similarity-rules
http://www.onsemi.com
http://www.onsemi.com/PowerSolutions/product.do?id=NCS36000
http://www.onsemi.com/PowerSolutions/product.do?id=NCS36000
http://www.onsemi.com/PowerSolutions/supportDoc.do?type=software&rpn=AX8052F143
http://www.onsemi.com/PowerSolutions/supportDoc.do?type=software&rpn=AX8052F143
http://makers.sigfox.com/getting-started/
https://resources.sigfox.com/document/whycertification
https://resources.sigfox.com/document/whycertification
www.onsemi.com/site/pdf/Patent-Marking.pdf

