DIP-26 Series: New Transfer Molded Power Integrated Module (TMPIM) for Industrial Drives

INTRODUCTION

TMPIM Structure

This instruction applies to ON Semiconductor transfer molded power integrated module (TMPIM) in the category of DIP-26 series. TMPIM adopts transfer molding process to encapsulate the power devices and peripheral components with epoxy molding compound. The construction structure is shown in Figure 1. The power devices and passive component like thermistor are solder attached to Direct Bonded Copper (DBC) substrates and connected thru thick aluminum bond wires and leadframe.

DIP-26 series offer two platforms in substrate selection, Standard TMPIM and Enhanced TMPIM, as shown in Figure 2. Though both platforms look identical from outside look sharing the same pinout and size, they have different substrate internally. Standard TMPIM adopts standard nickel plated Al2O3 DBC substrate. Enhanced TMPIM uses thick copper advanced substrate for high reliability and lower thermal resistance.

Figure 1. Internal Structure in TMPIM
TMPIM series packaging has concise and robust manufacturing process. The transfer molding process eliminates the plastic housing, glue and the associated connection & curing procedure. The epoxy molding compound selected for encapsulation has demonstrated able to extend the module life time by times compared to gel filled module. Platform options with variable substrates offer high power density and wide output power range, and customer design flexibility.

DIP–26 series provide module products in different topologies such as converter–inverter–brake (CIB), converter–inverter (CI), six–pack, and other multi–level converters. (C) I (B) topology the voltage and current rating parts are shown in Table 1.

Table 1. (C) | (B) PRODUCTS IN DIP–26

<table>
<thead>
<tr>
<th>Config</th>
<th>Package</th>
<th>1200 V</th>
<th>650 V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25 A</td>
<td>35 A</td>
</tr>
<tr>
<td>CIB</td>
<td>DIP–26</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Enhance DIP–26</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>CI</td>
<td>DIP–26</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enhance DIP–26</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>6–pack</td>
<td>DIP–26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enhance DIP–26</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

NOTE: x = Released / x = Releasing

Application Scheme

The application scheme of TMPIM CIB power modules is shown in Figure 3. CIB internal connections are put in the black box, which consists of three sections: converter, inverter and brake. The initial letter of these three are C−I−B, and it is how we call the circuit. The CIB module is widely used in HVAC, motor drive and servo industrial application. During working, the input pins R/S/T at converter draw the power from three phase grid and the 6 rectifier diodes in converter regulate the AC current into DC. Three phase voltage are popular in two classes, 240 V class and 400 V class. According to the magnitude of DC voltage after regulation, 650 V class CIB module and 1200V class CIB module can be chosen. Immediate after the converter, DC bus capacitor would be connected to positive and negative DC bus, to smooth the voltage ripple from inverter dynamic power usage. By switching on and off the 6–IGBT and freewheeling diode (FRD) in the inverter circuit, it will chop the DC power into AC power and output to motor. The output voltage/current is controlled thru pulse width modulation signal, to generate the power that can drive the motor at desired speed and direction. When we defined the TMPIM power module how many Amperes, the current is referring to IGBT rating in inverter section. As a guideline, 1200 V 25 A TMPIM CIB module can deliver 5 kW motor power; 35 A TMPIM to deliver 7.5 kW; 50 A will deliver 10 kW. We have 15 kW and 20 kW covered by QLP which will come soon. It is noticeable this is only a general guideline. When users have different control and cooling setting, the output power rating can be greatly varied. For example, certain customer used 35 A module for 11 kW under fan cooling, and another customer used 50 A module for 24 kW under liquid cooling condition. The max output power is co–defined by power module itself and how module are going to be controlled and cooled during work. A simulation tool can be provided to customer in helping with defining the maximum output power. When motor is stopping and decelerating, it works in regenerative mode. The power is pump back from motor to DC bus capacitor. When the power is excessive, it can over charge the capacitor and cause damage. To prevent it happening, the brake IGBT turns on, an external brake resistor which is connected in series with the brake IGBT can discharge the regenerative power and keep the capacitor voltage at safe level. In certain applications like fan, pump and electrical heater, where regenerative power not significant, the brake circuit is not used and can be removed. Then the module is called CI module, standing for Converter Inverter module.
Figure 3. Application Scheme of TMPIM CIB Power Modules

Drawing and Dimensions

The DIP−26 outline drawing and dimension is shown in Figure 4.
The pinout of the CIB modules are shown in Figure 5. The CI module shares the same pinout as CIB except the pin B, GB, and NB are non-connected.

Figure 5. Pinout of CIB Module in DIP–26
Reliability Test and Lifetime

Accelerated temperature and electrical stress testing is to represent the normal use condition in the working life, and to ensure power module product quality with the proper design and careful planning. The test items for transfer molded DIP–26 module are listed in Table 2.

Table 2. TMPIM RELIABILITY TEST ITEMS

<table>
<thead>
<tr>
<th>Test</th>
<th>Name</th>
<th>Reference</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTRB</td>
<td>High Temp Reverse Bias</td>
<td>JESD22–A108</td>
<td>$T_j = 150^\circ\text{C}$, $V = 90%$ (Diode, IGBT) BV of (1.200 V)</td>
</tr>
<tr>
<td>H3TRB</td>
<td>High Humidity High Temperature Reverse Bias</td>
<td>JESD22–A101</td>
<td>$T = 85^\circ\text{C}$, $\text{RH} = 85%$, time = 1008 hours, $V = 80%$ BV</td>
</tr>
<tr>
<td>PCT −1</td>
<td>Power Cycling Test–1</td>
<td>MIL–STD–750 (M1036&M1037)</td>
<td>$\Delta T = 100^\circ\text{C}$, $T_{\text{junction max}} = 25$ to 125°C, cycles = 62.5k</td>
</tr>
<tr>
<td>PCT −2</td>
<td>Power Cycling Test–2</td>
<td>MIL–STD–750 (M1036&M1037)</td>
<td>$\Delta T = 125^\circ\text{C}$, $T_{\text{junction max}} = 25$ to 150°C, cycles = TTF</td>
</tr>
<tr>
<td>PCT −3</td>
<td>Power Cycling Test–3</td>
<td>MIL–STD–750 (M1036&M1037)</td>
<td>$\Delta T = 150^\circ\text{C}$, $T_{\text{junction max}} = 20$ to 170°C, cycles = TTF</td>
</tr>
<tr>
<td>Reflow</td>
<td>Reflow</td>
<td>JESD22–A103 cond. B</td>
<td>$T_p = 210^\circ\text{C}$ (solder melting temp 220°C)</td>
</tr>
<tr>
<td>HTSL</td>
<td>High Temp Storage Life</td>
<td>JESD22–A103 cond. B</td>
<td>$T_a = 125^\circ\text{C}$ or 150°C, time = 1008 hours</td>
</tr>
<tr>
<td>LTSL</td>
<td>Low Temp Storage Life</td>
<td>JESD22–A119, cond. A</td>
<td>$T = -40^\circ\text{C}$, time = 1008 hours</td>
</tr>
<tr>
<td>THU</td>
<td>Temperature Humidity Unbiased</td>
<td>JESD22–A101</td>
<td>$T = 85^\circ\text{C}$, $\text{RH} = 85%$, time = 1008 hours, no bias</td>
</tr>
<tr>
<td>TC</td>
<td>Temperature Cycling</td>
<td>JESD22–A104 cond. G, soak mode 4</td>
<td>$T_{\text{min}} = -40^\circ\text{C}$, $T_{\text{max}} = 125^\circ\text{C}$, cycles = 1000 cyc</td>
</tr>
<tr>
<td>Rthjc</td>
<td>Thermal resistance</td>
<td></td>
<td>Before/After TC 1000 cyc</td>
</tr>
<tr>
<td>VVF</td>
<td>Vibration Variable Frequency</td>
<td>JESD22–B103</td>
<td>25–500 Hz / 15 min, 10 G, each 2 hours X, Y, Z</td>
</tr>
<tr>
<td>PDD</td>
<td>Package drop</td>
<td>EIAJ–ED–4701 A124</td>
<td>drop from 75 cm onto 3 cm thick maple board 3 times</td>
</tr>
<tr>
<td>SD</td>
<td>Solderability</td>
<td>JESD22–B102</td>
<td>solder 215°C, 5 s</td>
</tr>
</tbody>
</table>

During DIP–26 power cycling, the IGBT is heated up by high current and temperature rises more than 100°C in couple of seconds, then cool down rapidly by cutting off current and active cooling. This acceleration test is to mimic the aging effect by power devices self−heating during work. While temperature changes rapidly, high stress is introduced between material with different coefficient of thermal expansion, and even stress inside homogenous material with temperature gradient. When range of temperature, or ΔT_j increases, normally more degradation in each cycle and shorter life time span can be expected. Thru test at different ΔT_j and extrapolating with aging mechanism, we can predict the lifetime of the module, as Figure 6. It is seen DIP–26 has exceptionally long life time, as encapsulant acting to prevent the bond wire from liftoff and solder from detaching.

Figure 6. Lifetime Curve of DIP–26
PRODUCTION LIST
Below are the products currently released under 1200 V class.

Table 3.

<table>
<thead>
<tr>
<th>Part #</th>
<th>Voltage</th>
<th>Current</th>
<th>Topology</th>
<th>Platform</th>
<th>Pin Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NXH25C120L2C2SG</td>
<td>1200 V</td>
<td>25 A</td>
<td>CIB</td>
<td>Standard DIP–26</td>
<td>Solder Pin</td>
</tr>
<tr>
<td>NXH35C120L2C2SG</td>
<td>1200 V</td>
<td>35 A</td>
<td>CIB</td>
<td>Standard DIP–26</td>
<td>Solder Pin</td>
</tr>
<tr>
<td>NXH35C120L2C2S1G</td>
<td>1200 V</td>
<td>35 A</td>
<td>CI</td>
<td>Standard DIP–26</td>
<td>Solder Pin</td>
</tr>
<tr>
<td>NXH35C120L2C2ESG</td>
<td>1200 V</td>
<td>35 A</td>
<td>CIB</td>
<td>Enhanced DIP–26</td>
<td>Solder Pin</td>
</tr>
<tr>
<td>NXH50C120L2C2ESG</td>
<td>1200 V</td>
<td>50 A</td>
<td>CIB</td>
<td>Enhanced DIP–26</td>
<td>Solder Pin</td>
</tr>
<tr>
<td>NXH50C120L2C2ES1G</td>
<td>1200 V</td>
<td>50 A</td>
<td>CI</td>
<td>Enhanced DIP–26</td>
<td>Solder Pin</td>
</tr>
</tbody>
</table>

Nomenclature
The nomenclature of the TMPIM product is shown as Table 4:
Example: NXH50C120L2C2ES1G–AA

Table 4. TMPIM NOMENCLATURE

<table>
<thead>
<tr>
<th>No.</th>
<th>N</th>
<th>X</th>
<th>H</th>
<th>50</th>
<th>C</th>
<th>120</th>
<th>L2</th>
<th>C2</th>
<th>ES1</th>
<th>()</th>
<th>G</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

No.	Description
1	Product Class: N = ON Semiconductor Standard;
2	Product Group: X = Power Module
3	Product Family: H = IGBT Power Integrated Module
4	Current Rating in Ampere @ 100°C
For example: 8 = 8 A (minimum); 80 = 80 A; 3600 = 3600 A (maximum)	
5	Configuration:
C = converter Inverter Brake	
S = Six Pack	
M = Customized	
6	Voltage Rating:
Nomenclature = (Voltage/10 (V)	
For example: 06 = 60 V (minimum); 120 = 1200 V; 330 = 3300 V (maximum)	
7	Optional Performance Attributes:
L2 = Field Stop Gen II IGBT	
L4 = Field Stop Gen IV IGBT	
R = Reverse conducting (monolithic)	
M = Full SiC module	
S = Special (S1, S2, etc)	
8	Package Designator:
C2 = DIP–26	
C2E = enhanced DIP–26	
9	Pin Type:
S = solder pin; P = press–fit pin	
Pinout Revision	
Blank = original; Revision = 1–9	
10	DBC Process:
Standard = Blank; T = Pre–applied TIM on the backside of the product	
11	Lead Free Designator Suffix:
G = Lead Free	
12 | Internal usage only. They may or may not display on module depending on customer request.
13 | Internal usage only. They may or may not display on module depending on customer request.
Product Marking

TMPIM product will be marked in the way to trace the assembly and test site, time and lot number. The explanation of the part marking is shown in Figure 7.

Figure 7. TMPIM Part Marking

Line 1: Device name
Line 2: ZZZATYWW
ZZZ: lot code
AT: Assembly + Test site code
YWW: Date Code
2D Barcode: 2DID mark <Lot#> <8 digit unit#>

Module Storage and Transportation

DIP–26 module has been qualified through low/high temperature storage, humidity and vibration test. Every the module has passed the high voltage (3000 V) isolation test. However, it is not recommended to store and transport under these extreme conditions.

Below conditions are recommended:

- Ambient temperature: 5°C ~ 40°C
- Relative Humidity: 10% ~ 75%

Safety Standard

TMPIM DIP–26 modules are certified according to UL1557 standard under C2 series. The isolation voltage is 2500 Vrms under 1 minute type test. Before out of factory every TMPIM module product is tested at 3000 Vrms minimum 1 second.
MODULE HANDLING

PCB Tolerance, Design and Soldering

DIP−26 has power connectors/terminals (max 52 pins) inline on two sides of the module. Electrical connection is made through attaching these terminals to the print circuit board (PCB) atop with solder. PCB can be further fixed onto heatsink with the screw and spacer with height at 12mm which is defined by four stopper at the most external pins, as shown in Figure 9. Soldering is recommended after mounting crew tighten, PCB installed and final inspection done – to reduce the residual stress.

Figure 9. Stopper to define the 12 mm Mounting Height

PCB holes with fully plated inside will enable 100% wetting and fillet between pin and both sides of PCB as in Figure 10.

Figure 10. Solder Wetting of PCB Through Hole

The terminals in TMPIM is 1.2 mm ± 0.05 mm in length and 0.8 mm ± 0.05 mm in width as in Figure 11. All the terminals are plated with null tin and need plug in and be soldered to PCB. The terminal through hole on PCB should be slightly larger than 1.5 mm with consideration the PCB manufacturing tolerance.

Figure 11. Terminal in TMPIM Module (Unit in mm)
Wave soldering profile shown in Figure 12.

![Wave Soldering Profile](image)

Figure 12. Profile for Wave Soldering

- **Hand soldering**
 - Solder iron temperature = 350°C (max).
 - Contact time = 10 sec (max).
 - Number of heat cycles = 3 (max).

Thermal Grease Applying

The backside of TMPIM module and surface of heatsink are not ideally smooth. TIM is used to reduce the contact air cavities and help the thermal dissipation. Such TIM material may be thermal pad, foil, grease, and any other similar. The material selection should consider the thermal conductivity, dry out during aging, and shape maintaining/elastic property during power ON/OFF cycling. When applying thermal grease, the material needs be applied uniformly on the whole surface that contacts with module substrate. If module is reinstalled, thermal grease needs be applied again.

- Recommended thermal paste thickness for DIP−26 is 50−100 μm.

A good practice to apply thermal grease is through screen printing. An example of printing stencil used for TMPIM is shown in Figure 13. Based on viscosity of thermal grease, the honeycomb dimension could be slightly tuned.

![Grease Printing Stencil](image)

Figure 13. An Example of Grease Printing Stencil for TMPIM Module
Heatsink Spec and Mounting
The heatsink should have no contamination, unevenness, and burrs on the surface contacting with module.
• The roughness of heatsink surface need be less than 50 μm.
• Screw holes on heatsink need be countersunk.
The TMPIM module is mounted on the cooling plate/heatsink using mounting screw/washer. To achieve a better thermal dissipation contact, thermal interface material (TIM) is usually pre−applied on the surface of heatsink – some modules may have TIM pre−applied on the backside of the power module. To reduce the module stray inductance
During heatsink mounting, the screws should be half−tightened in both sides and sequentially fully tighten.
• Metric screw M4 with JIS B 1256 flat washers (D:9mm, d:4.8mm and t:0.8mm as in Figure 15)
• Mounting torque: Temporary tightening : 0.40 ~ 0.60Nm; Final torque 1.2~1.5 Nm;
• The screw depth in heatsink > 6 mm

The procedure to mount PIM on a Heat Sink is shown in Figure 14.
1st: Tighten maintaining a left/right balance with temporary torque;
2nd: Finally tighten maintaining a left/right balance with final torque 1.2~1.5 Nm;
Thus mounting example is as: 1st ① → ②, 2nd ① → ②

Temperature Monitoring (NTC, Thermal Coupler)
TMPIM substrate/DBC temperature can be monitored through thermistor installed in the module. The thermistor has the characteristic of reducing resistance with increased temperature (negative temperature coefficient). As such, by retrieving the resistance (Ω) thru signal pickup circuit, the module substrate temperature can be looked up using the thermistor Resistance–Temperature curve in Figure 16.

![Figure 14. Mounting Sequence on Heatsink](image1)

![Figure 15. Size of Washer](image2)

![Figure 16. TMPIM Resistance–Temperature Curve](image3)
Alternatively, the thermistor resistance at given temperature, $R(t)$ can also be calculated as,

$$R(t) = R_{25} \cdot e^{B \frac{1}{T_2 - T_1}}$$

Where,

B: B–value of the thermistor as given in product datasheet.

For DIP−26 module, $B (25/50) = 3375$; $B (25/100) = 3433$

$T_2 = \text{Temp NTC} + 273.15 \, \text{K}$

$T_1 = 298.15 \, \text{K}$

R_{25} is the rated resistance at 25°C. i.e., $R_{25} = 5 \, \text{k\Omega}$

Power Loss and Heat Dissipation

There will be the voltage drop when there is certain level of current conducting in the IGBT/FRD and rectifier. The voltage drop is physically and design defined by the p−n junction band gap, resistivity modulation in drift region and die size. The power devices also need time to turn ON and OFF by injecting or eliminating the carries inside. This ON and OFF periods, representing in waveform, show both high current and high voltage generating power loss at each switching moment. For IGBT it is shown as E_{on} and E_{off} representing the energy consumed during turn on and turn off. For diode, it is shown as Err representing the energy to turn off the diode and sweeping off the carriers. The diode turn on energy is small and normally negligible for thermal evaluation.

Based on the electrical Data from product datasheet, we can simulate the power loss of the module at given working condition. The DC data will be used to calculate the conduction loss using voltage drop multiplying by current. The switching loss occurs at each switching moment. By accumulating the power loss at each moment, we can find the total power loss of the device.

With known the thermal resistance of the power devices, the temperature rise of the component can be calculated by multiplying power loss with thermal impedance. A module with low thermal resistance will dissipate heat out effectively, having higher output power capability when maximum operating temperature is defined.

A PTS tool can be provided upon request to customer for power loss and junction temperature simulation under desired working condition as in Figure 17.
PCB LAYOUT

PCB Reference Design and Evaluation Board
One reference PCB design for the 1200 V released CIB modules with pad size are shown in Figure 18.

Interested customer can also find the TMPIM evaluation board reference design at www.onsemi.com. On this board, TMPIM module, the gate driver, current sensors, power terminals and PWM signal connector are all integrated. The user can evaluate the TMPIM module performance with minimal effort by making a few wire connection.