Introduction

Question

“Is it possible to drive 125kB with the AMIS−41682?”
Please consider all possible CAN bit timings (TSEG1, TSEG2, SJW), a capacitive load at each can pin about 300 pF and l = 20m line (5 ns/m) length. Please investigate different communication scenarios (e.g. arbitration).

Conclusion

The maximum propagation delay measured at 125 kB is 1.555 μs. This is for 270 pF capacitive load and a bus length of 20m. When using the AMIS−41682, the user has to program the CAN−controller in such a way that the propagation segment of a bit time accounts for two maximum propagation delays to ensure correct function of the bus during arbitration and acknowledgment. In our example, the propagation segment shall be at least 3.11 μs long.

If for instance the bit time is divided in 16 time quanta (t_q), t_q will be 0.5 μs and the Prop_Seg has to be set to 7 t_q = 3.5 μs. By applying this CAN−controller setting, it’s ensured that the bus signal will be sampled correctly in all situations.

Figure 1. Example of CAN−Controller Setting Suitable for 125kB Operation with AMIS−4168x

Overall, it is not a problem to drive 125 kB with the AMIS−41682.

Performed Measurements

Propagation delay between Tx_1 and Rx_1 (transceiver 1) and Tx_1 and Rx_2 (receive transceiver 2) for different cable length, and CANL/CANH termination of 220 Ω

Used equipment:

- Oscillator type: Hewlett−Packard 3310A Function Generator; frequency 62.5 kHz (t_bit = 8 μs)
- Oscilloscope type: Agilent Infiniium 600 MHz, 4 GSa/s
- Power supply: Thurlby Thandar Instruments PL310QMD
- Cable: Alcatel TIA/EIA 568−B.2 Category 5e; 100 Ω; propagation delay: 570 ns/100m at 1 MHz

The circuit shown in was Figure 2 used for the measurement.
Figure 2. Measurement Set-Up

Measurements Results
Propagations delay (see data sheet) L -> H and H -> L for different bus configurations.

Table 1. MEASURED PROPAGATION DELAYS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
</table>
| \(t_{PD(H)} \) | Propagation delay Tx_1 to Rx_1 high | \(C_1 = C_2 = 270 \text{ pF} \)
| \(L = 0 \text{m} \) | 1.041 \(\mu \text{s} \) | See Figure 3 |
| \(t_{PD(L)} \) | Propagation delay Tx_1 to Rx_1 low | \(C_1 = C_2 = 270 \text{ pF} \)
| \(L = 0 \text{m} \) | 1.107 \(\mu \text{s} \) | See Figure 4 |
| \(t_{PD(H)} \) | Propagation delay Tx_1 to Rx_2 high | \(C_1 = C_2 = 270 \text{ pF} \)
| \(L = 0 \text{m} \) | 1.051 \(\mu \text{s} \) | See Figure 5 |
| \(t_{PD(L)} \) | Propagation delay Tx_1 to Rx_2 low | \(C_1 = C_2 = 270 \text{ pF} \)
| \(L = 0 \text{m} \) | 1.110 \(\mu \text{s} \) | See Figure 6 |
| \(t_{PD(H)} \) | Propagation delay Tx_1 to Rx_1 high | \(C_1 = C_2 = 270 \text{ pF} \)
| \(L = 20 \text{m} \) | 1.536 \(\mu \text{s} \) | See Figure 7 |
| \(t_{PD(L)} \) | Propagation delay Tx_1 to Rx_1 low | \(C_1 = C_2 = 270 \text{ pF} \)
| \(L = 20 \text{m} \) | 1.176 \(\mu \text{s} \) | See Figure 8 |
| \(t_{PD(H)} \) | Propagation delay Tx_1 to Rx_2 high | \(C_1 = C_2 = 270 \text{ pF} \)
| \(L = 20 \text{m} \) | 1.555 \(\mu \text{s} \) | See Figure 9 |
| \(t_{PD(L)} \) | Propagation delay Tx_1 to Rx_2 low | \(C_1 = C_2 = 270 \text{ pF} \)
| \(L = 20 \text{m} \) | 1.244 \(\mu \text{s} \) | See Figure 10 |
Figure 3. Propagation Delay $t_{PD(H)}$ Between Tx_1 and Rx_1 at 125kB and Cable Length 0m = 1.041 μs

Figure 4. Propagation Delay $t_{PD(L)}$ Between Tx_1 and Rx_1 at 125kB and Cable Length 0m = 1.107 μs
Figure 5. Propagation Delay $t_{PD(H)}$ Between Tx_1 and Rx_2 at 125kB and Cable Length 0m = 1.051 μs

Figure 6. Propagation Delay $t_{PD(L)}$ Between Tx_1 and Rx_2 at 125kB and Cable Length 0m = 1.110 μs
Measurements Cable Length 20m

Figure 7. Propagation Delay \(t_{PD(H)} \) Between Tx_1 and Rx_1 at 125kB and Cable Length 20m = 1.536 \(\mu \)s

Figure 8. Propagation Delay \(t_{PD(L)} \) Between Tx_1 and Rx_1 at 125kB and Cable Length 20m = 1.176 \(\mu \)s
Figure 9. Propagation Delay $t_{PD(H)}$ Between Tx_1 and Rx_2 at 125kB and Cable Length 20m = 1.555 μs

Figure 10. Propagation Delay $t_{PD(L)}$ Between Tx_1 and Rx_2 at 125kB and Cable Length 20m = 1.244 μs

Company or Product Inquires
For more information about ON Semiconductor’s CAN/LIN transceivers, send an email to http://www.onsemi.com/sales.

For more information about ON Semiconductor’s products or services visit our Web site at http://www.onsemi.com.