ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

NCP1351 Evaluation Board, a 12 V / 2 A Full DCM Adapter

Prepared by Stéphanie Conseil

http://onsemi.com

This application note describes a 12 V / 2 A simple adapter operated by NCP1351, a fixed *on*-time / variable *off-time* controller.

This adapter features a very low standby power (below 90 mW at 230 VAC input voltage) and shows a good EMI signature.

The NCP1351 at a Glance

Fixed t_{on} , Variable t_{off} Current-mode Control: Implementing a fixed peak current mode control (hence the more appropriate term "quasi-fixed" t_{on}), the NCP1351 modulates the off-time duration according to the output power demand. In high power conditions, the switching frequency increases until a maximum is hit. This upper limit depends on an external capacitor selected by the designer. In light load conditions, the off-time expands and the NCP1351 operates at a lower frequency. As the frequency reduces, the contribution of all frequency-dependent losses accordingly goes down (driver current, drain capacitive losses, switching losses), naturally improving the efficiency at various load levels.

Peak Current Compression at Light Loads: Reducing the frequency will certainly force the converter to operate into the audible region. To prevent the transformer mechanical resonance, the NCP1351 gradually reduces – compresses – the peak current setpoint as the load becomes lighter. When the current reaches 30% of the nominal value, the compression stops and the off duration keeps expanding towards low frequencies.

Low Standby-Power: The frequency reduction technique offers an excellent solution for designers looking for low standby power converters. Also, compared to the skip-cycle method, the smooth off time expansion does not bring additional ripple in no-load conditions: the output voltage remains quiet.

Natural Frequency Dithering: The quasi-fixed t_{on} mode of operation improves the EMI signature since the switching frequency varies with the natural bulk ripple voltage.

Extremely Low Startup Current: Built on a proprietary circuitry, the NCP1351 startup section does not consume more than 10 µA during the startup sequence. The designer

can thus easily combine startup time and standby consumption requirement.

Overload Protection Based on Fault Timer: Every designer knows the difficulty of building converters where a precise over current limit must be obtained. When the fault detection relies on the auxiliary V_{CC} , the pain even increases. Here, the NCP1351 observes the lack of feedback current starts a timer to countdown. At the end of its charge, the timer either triggers an auto-recovery sequence (auto-restart, B version) or permanently latches-off (A).

Latch Fault Input: A dedicated input lets the designer externally trigger the latch to build additional protections such as overvoltage (OVP) or overtemperature (OTP).

Schematic

The design must fulfill the following specifications:

Input Voltage: 90 VAC – 265 VAC Output Voltage: 12 V @ 2 A Auto-recovery Short-circuit Protection Standby Power: 90 mW or Lower Startup Duration: Less than 3 s

The maximum switching frequency is selected to 65 kHz.

The converter operates in DCM only which allows a smaller transformer compared to CCM mode. Also, the converter behaves as a first order system and is easier to stabilize.

The transformer parameters have been calculated by using the design recommendations described in the NCP1351 datasheet:

```
L_P = 310 \ \mu H
```

 $I_{P} = 1.8 A$

 $N_P:N_S = 1:0.18$

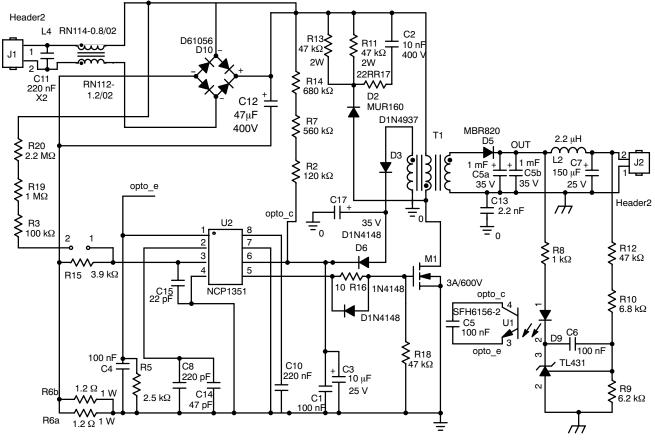
 $N_P:N_{AUX} = 1:0.22$

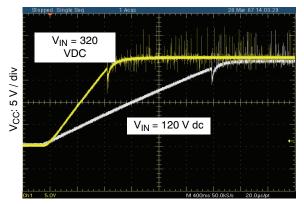
The core is a PQ20*20 made of a N87 material and has been manufactured by Delta Electronics (reference: 86H-7071). The leakage inductance is very low (around 1% of L_P) leading to a good efficiency and reduced losses in no load condition.

Half-wave connection for the startup resistors ensures less power loss in the startup resistor network compared to a classical bulk connection. Voltage regulation at the secondary is achieved through a TLV431, which requires very low bias current (> 100μ A). Thus no additional bias resistor is needed.

NCP1351 features natural frequency dithering as the switching frequency varies with the bulk ripple. Additional

frequency dithering can be provided to the controller by injecting some half-wave ripple in the CS pin through a 3.3 M Ω resistor connected to the input line. A jumper on the board allows to connect or to disconnect the dithering resistor.




Figure 1. Board schematic

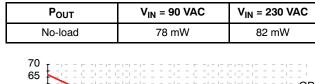
Measurements

We obtained maximum startup duration of 2.5 s with a startup resistor of 1.36 M Ω and half-wave connection for the resistor. (See Figures 2 and 7)

STARTUP

POUT	V _{IN} = 120 VDC	V _{IN} = 320 VDC		
Startup Time @ I _{OUT} = 2 A	2.5 s	1 s		

TIME: 400 ms / div Figure 2. V_{CC} Startup at Low and High Input Voltage


The power measurements were performed with a WT210A from Yokogawa.

Before doing the measurements we operated the board for 15 minutes at full power to allow some warm-up time.

EFFICIENCY

POUT	V _{IN} = 90 VAC	V _{IN} = 230 VAC
24 W	83%	85%
12 W	82%	84%
6 W	77%	83%
1 W	69%	75%
0.5 W	63%	64%

STANDBY

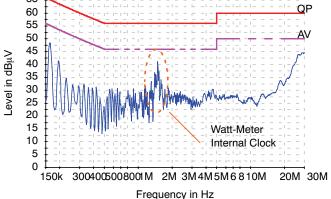
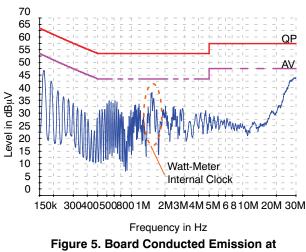



Figure 3. Board Conducted Emission at 110 VAC, 1.4 A Load, 2x27 mH Input Filter

220 VAC, 1.4 A Load, 2x27 mH Input Filter

In the above arrays, we can see that we achieve a good efficiency despite the load variation. Also, thanks to the expansion of the switching frequency at light loads, the efficiency does not decrease too much.

By optimizing power dissipation in startup resistor and feedback components, we achieve an outstanding standby power of 82 mW at 230 VAC input voltage.

After operating the board during 15 mn at full load in order to warm it up, conducted electromagnetic emission measurements were made in average mode using a Rohde & Schwarz EMI Test Receiver following the CISPR22 standard.

The measurement was made with and without frequency dithering option, and with two different inputs filter size: 2x15 mH and 2x27 mH. (See Figure 3, Figure 4, Figure 5 and Figure 6)

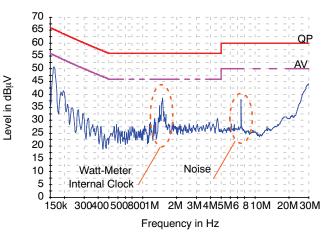
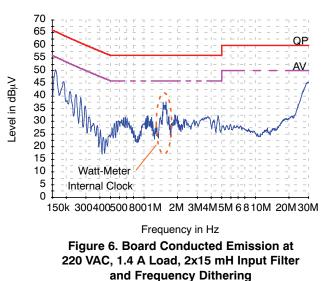
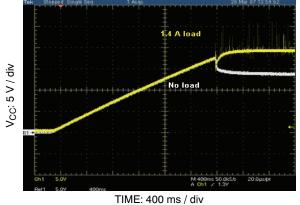
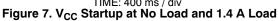
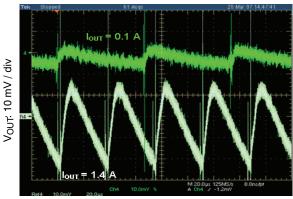



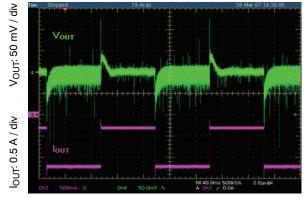
Figure 4. Board Conducted Emission at 110 VAC, 1.4 A Load, 2x15 mH Input Filter and Frequency Dithering


SCOPE SHOOTS


The peak seen at 1.5 MHz on the graphs is the watt-meter internal clock.


The graphs show that frequency dithering improves the EMI signature between 400 kHz and 25 MHz (emission level below 35 dB μ V)

The drawback of implementing frequency dithering on CS pin is that it increases the output voltage ripple at light output loads.


The output voltage ripple is 50 mV at 16 W output power 10 mV at 1 W output power. (See Figure 8)

TIME: 20 μs / div Figure 8. Output Voltage Ripple for Different Loads at V_{IN} = 320 VDC

TIME: 40 ms / div Figure 9. Load Step from 1.2 A to 0.1 A with a 0.1 A / µs Slew-Rate from a 230 VAC Source

Conclusion

The 24 W adapter built with NCP1351 shows excellent results on several parameters like the standby power (82 mW at V_{IN} = 230 VAC), the efficiency, the EMI signature.

The board features an option to inject frequency dithering in the design allowing to improve the EMI signature and to use a smaller input filter at the cost of the output ripple at light load.

Delta Electronics Transformer contact Americas

Delta Products Corporation 4405 Cushing Parkway Fremont, CA 94538 U.S.A. Gordon Kuo Phone: (1) 510-668-5166 email: GKuo@delta-corp.com

Asia

Delta Electronics, Inc. 252 Shangying Road, Guishan Industrial Zone Taoyuan County 33341 Taiwan, R.O.C. Jack Kuo Phone: (886)-3-3591968 #2342 Fax: (886)-3-3591991 E-mail: jack.zc.kuo@delta.com.tw

Europe

Delta Electronics Europe Wegalaan 16 2132JC Hoofddorp The Netherlands Coleman Liu Phone: (31) 23 566 8950 Fax: (31) 23 566 8910 Email: cliu@euro.delta-corp.com

BILL OF MATERIAL

Desig- nator	Qty	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Pb Free
C1,C4, C5,C10	4	SMD Capacitor	100nF/50V	5%	SMD 1206	Phycomp	2238 581 15649	Yes	Yes
C2	1	Capacitor	10nF/630V	10%	Radial	Vishay	MKT1822310635	Yes	Yes
C3	1	Electrolytic Capaci- tor	10μF/50V	20%	Radial	Panasonic	ECA1HM100	Yes	Yes
C5b,C5a	2	Electrolytic Capaci- tor	1000μF/35V	20%	Radial	Panasonic	EEUFC1V102	no	Yes
C6	1	Capacitor	100nF/50V	10%	Radial	Murata	RPER71H104K2M 1A05U	Yes	Yes
C7	1	Electrolytic Capaci- tor	150μF/35V	20%	Radial	Panasonic	EEUFC1V151	Yes	Yes
C8	1	SMD Capacitor	220pF/50V	5%	SMD 1206	Phycomp	2238 863 15221	Yes	Yes
C11	1	x2 Capacitor	220nF/630V	20%	Radial	Evox Rifa	PHE840MD6220M	Yes	Yes
C12	1	Electrolytic Capacitor	47μF/400V	20%	Radial	Panasonic	ECA2GM470	Yes	Yes
C13	1	y1 Capacitor	2.2nF/250V	20%	Radial	Ceramite	440LD22	Yes	Yes
C14	1	SMD Capacitor	47pF/50V	5%	SMD 1206	Phycomp	2238 863 15479	Yes	Yes
C15	1	SMD Capacitor	22pF/50V	5%	SMD 1206	Phycomp	2238 863 15229	Yes	Yes
C17	1	Electrolytic Capacitor	100μF/35V	20%	Radial	Panasonic	ECA1VM101	Yes	Yes
D2	1	Ultrafast Rectifier	1A/600V	0%	Axial	ON Semiconductor	MUR160G	Yes	Yes
D3	1	Rectifier Diode	1A/600V	0%	Axial	ON Semiconductor	1N4937G	Yes	Yes
D5	1	Schottky Diode	8A/100V	0%	TO-22	ON Semiconductor	MUR820G	Yes	Yes
D6	1	High-speed Diode	0.2A/75V	0%	Axial	Philips Semiconductor	1N4148	Yes	Yes
D8	1	High-speed Diode	0.2A/100V	0%	SMD	ON Semiconductor	MMSD4148T1G	Yes	Yes
D9	1	Shunt Regulator	2.5-36V/1- 100mA	2%	TO-92	ON Semiconductor	TLV431ILPG	Yes	Yes
D10	1	Diode Bridge	1A/600V	0%	Radial	TAIWAN Semiconductor	DB105G	Yes	Yes
HS2	1	Heatsink	6.2°C/W	0%	Radial	Seifert	KL194/25.4/SWI	Yes	Yes
J1	1	Connector	230VAC/	0%	Radial	Multicomp	JR-201S(PCB)	Yes	Yes
J2	1	Connector	2/"	0%	RAD5.08 mm	Weidmuller	PM5.08/2/90	Yes	Yes
L4	1	Inductor	2*27mH /0.8A	0%	Radial	Schaffner	RN114-0.8/02	Yes	Yes
M1	1	Power MOSFET N-Channel	3A/600V	0%	T0-220	Fairchild	FQP3N60	Yes	Yes
R2	1	Resistor	120kR /0.25W	5%	SMD 1206	Vishay	CRCW12061203F	Yes	Yes
R3	1	Resistor	100kR /0.25W	5%	SMD 1206	Vishay	CRCW12061003F	Yes	Yes
R5	1	SMD Resistor	2.4kR /0.25W	1%	SMD 1206	Welwyn	WCR 1206 2K4 2%	Yes	Yes
R6b,R6a	2	SMD Resistor	1.2R/1W	5%	SMD 1218	Phycomp	232273571208	Yes	Yes
R7	1	SMD Resistor	560kR /0.25W	1%	SMD 1206	Vishay	CRCW12065603F	Yes	Yes
R8	1	Resistor	1kR/0.33W	5%	Axial	Neohm	CFR25J1K0	Yes	Yes
R9	1	SMD Resistor	6.2kR /0.25W	1%	SMD 1206	Phycomp	232272466202	Yes	Yes

BILL OF MATERIAL

Desig- nator	Qty	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Pb Free
R10	1	SMD Resistor	6.8kR /0.25W	1%	SMD 1206	Vishay	CRCW12066801F	Yes	Yes
R11,R13	2	Resistor	47kR/2W	5%	Axial	Neohm	CFR200J47K	Yes	Yes
R12,R18	2	SMD Resistor	47kR /0.25W	1%	SMD 1206	Vishay	CRCW12064702F	Yes	Yes
R14	1	SMD Resistor	680kR /0.25W	1%	SMD 1206	Vishay	CRCW12066803F	Yes	Yes
R15	1	SMD Resistor	3.9kR/0.2W	1%	SMD 1206	Vishay	CRCW12063901F	Yes	Yes
R16	1	SMD Resistor	10R/0.25W	1%	SMD 1206	Vishay	CRCW120610R0F	Yes	Yes
R17	1	SMD Resistor	22R/0.25W	1%	SMD 1206	Vishay	CRCW120622R0F	Yes	Yes
R19	1	Resistor	1MR/0.25W	5%	SMD 1206	Vishay	CRCW12061004F	Yes	Yes
R20	1	SMD Resistor	2.2MR /0.25W	1%	SMD 1206	Phycomp	232272462205	Yes	Yes
T1	1	Transformer	86H-7071		Radial	Delta Electronics	86H-7071	No	Yes
U1	1	Optocoupler	SFH6156/	0%	SMD	Vishay	SFH6156-2T	No	Yes
U2	1	CMOS IC	NCP1351		SOIC-8H	ON Semiconductor	NCP1351B	No	Yes

AND8288/D

PCB LAYOUT

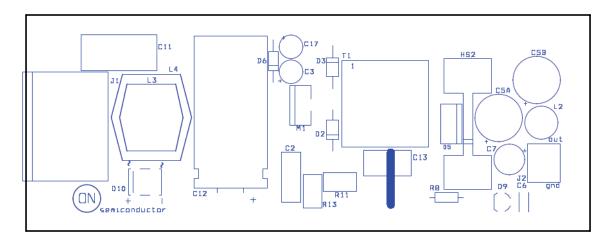


Figure 10. Top Side Components

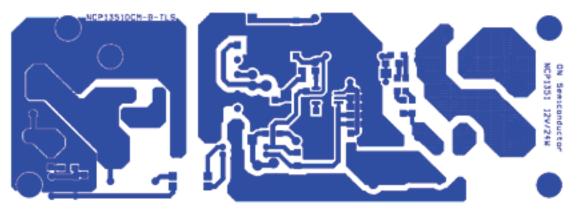
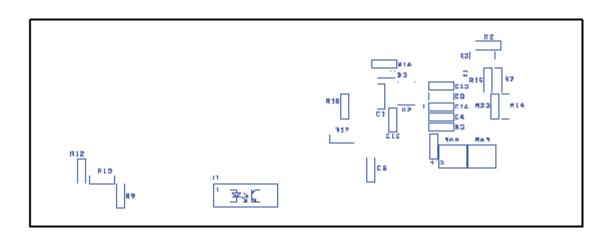



Figure 11. Copper Traces

AND8288/D

Figure 13. Adapter 12 V/24 W Picture (Top Side)

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative