Introduction

SPICE macro-models provide an accurate simulation of a TVS avalanche diode’s current versus voltage characteristics. These models can be used to analyze and optimize the performance of surge protection circuits. TVS macro-models are created by combining standard SPICE devices into a sub-circuit.

Data Sheet Specifications

The first item required to analyze the TVS macro-models is to review the device specifications listed on the data sheet. Figure 1 provides the current and voltage definitions of a unidirectional avalanche TVS diode.

![Diagram of current and voltage definitions](Diagram.png)

Figure 1. Definition of the Current and Voltage Data Sheet Specifications

- I_F: Forward current
- V_F: Forward voltage @ I_F
- I_R: Reverse leakage current
- V_{RWM}: Reverse working voltage @ I_R (V_{RWM} (typ.) = 0.8 × V_{BR})
- I_T: Test current
- V_{BR}: Breakdown voltage @ I_T
- I_{PP}: Maximum reverse peak pulse current (typically specified with either the 8 × 20 μs or 10 × 1000 μs surge pulse)
- V_C: Clamping voltage @ I_{PP}
Other important data sheet specifications include the capacitance and peak power rating. The capacitance of the diode is typically specified at a bias voltage of 0 Vdc, with an AC signal of 50 mV at 1.0 MHz. The power rating is typically defined for a small package with the $8 \times 20 \mu s$ (rise time \times pulse duration), while the $10 \times 1000 \mu s$ surge pulse is often used for defining devices in large packages. The peak energy in Watts is measured by multiplying the surge current (I_{PP}) and clamping voltage (V_C) waveforms together.

Macro-Model Sub-Circuit

The TVS diode’s macro-models are created by combining standard SPICE devices into a sub-circuit. Figure 2 shows a schematic of the macro-model. Appendix I provides the PSPICE netlist’s of the 1SMB28A and NUP2105 macro-models. The TVS macro-model is based on the Zener diode model documented in references [3] and [4]. References [1] and [2] provide alternative TVS diode SPICE models.

Forward Region

Diode D_1 is the key component when voltage V_D is greater than zero. The TVS diode’s forward bias characteristics are controlled by D_1’s saturation current (I_S), emission coefficient (N) and series resistance (R_S) variables. The current equations for the forward bias region are listed below.

$$I_D = I_F + I_L + I_R$$

$$= I_{F,D1} + \frac{V_D}{R_L} + I_{S,D2}$$

L_L \& $I_R << I_F$

$$\therefore I_D = I_{F,D1} = I_{S,D1} \left[e^{\frac{V_{D1}}{kT}} - 1 \right] = I_{S,D1} \left[e^{\frac{V_{D1}}{kT}} \right]$$

Where:

$$V_T = \frac{kT}{q} = 26 \text{ mV} @ 25^\circ \text{C}$$

$k =$ Boltzmann’s constant

$= 1.38 \times 10^{-23} \text{ joules}/5K$

$q =$ Electronic charge

$= 1.6 \times 10^{-19} \text{ coulombs}$

$T =$ Absolute temperature (Kelvin)

Leakage Region

The leakage or reverse bias region is defined when voltage V_D is between 0 V and the breakdown voltage (V_{BR}). Currents I_F and I_R are small in comparison to I_L because diodes D_1 and D_2 are reverse biased; thus, the leakage current can be approximated by V_D/R_L.

$$I_D = I_F + I_L + I_R$$

$$= I_{S,D1} + \frac{V_D}{R_L} + I_{S,D2}$$

I_F \& $I_R << I_L$

$$\therefore I_D = \frac{V_D}{R_L}$$

Breakdown Region

The breakdown region is modeled by EV_1, D_2 and R_Z. Current flows through this path when the voltage exceeds EV_1 plus the forward voltage of D_2. Breakdown voltage V_{BR} is specified at test current I_T and is equal to the product of I_{BV} and R_{BV}. D_3 is used to compensating for the voltage drop of D_2. The clamping voltage (V_C), specified at current I_{PP} is equal to the sum of the voltages of EV_1, R_Z and D_2 as shown below.
Impedance Characteristics

The TVS diode impedance consists of an inductive, capacitive and resistive term. Modeling the inductance ensures that the magnitude of the overshoot pulse due to the inductance \(V = L \frac{\Delta I}{\Delta t} \) of the IC package is simulated. Matching the capacitance helps to predict the shape of the clamped waveform. Including an accurate resistance term is important to predict the power capability of the device.

AC Model

The impedance of a TVS diode can be measured using a network analyzer. The real and imaginary portions of the measured impedance are then used to provide an equivalent small signal or AC model. The AC model consists of a resistor \((R_S) \), inductor \((L_S) \) and capacitor \((C_S) \) connected in series. \(R_S \) is equal to the real portion of the complex impedance and is measured at the resonant frequency \((f_R) \). At \(f_R \), the impedance is purely resistive because the impedance of \(L_S \) and \(C_S \) are equal in magnitude but opposite in polarity. \(C_S \) is typically obtained by measuring the capacitance at 1.0 MHz. \(L_S \) is obtained from the resonant frequency, which corresponds to the minimum impedance. Table 1 shows how the AC model impedance terms are integrated into the SPICE macro-model. The design equations for the AC model are listed below.

\[
Z_R = R; \quad Z_C = \frac{-j}{\omega C}; \quad Z_L = \omega L; \quad \omega = 2\pi f
\]

\[
Z = Z_{eqv} + jX_{eqv} = \sqrt{R_{eqv}^2 + X_{eqv}^2}
\]

\[
Z_{eqv} = \sqrt{R_S^2 + \left(2\pi f L_S - \frac{1}{2\pi f C_S}\right)^2}
\]

\[
Z_{eqv} \text{ @ } f_R = |Z_C| = Z_{C_L} = R_S \quad \text{and}\quad Z_{eqv} \text{ Min.} = R_S
\]

\[
L_S \text{ @ } f_R = \frac{1}{2\pi f C_L}; \quad L_S = \frac{1}{4\pi^2 f^2 R_S C_L}
\]

<table>
<thead>
<tr>
<th>AC Model Component</th>
<th>Equivalent Macro-Model Component</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_S)</td>
<td>(R_Z + D_{2,RS})</td>
<td>Typically (D_{2,RS} = 0); thus, (R_S = R_Z)</td>
</tr>
<tr>
<td>(L_S)</td>
<td>(L)</td>
<td>(L) produces a short overshoot pulse due to (V = L \frac{\Delta I}{\Delta t})</td>
</tr>
<tr>
<td>(C_S)</td>
<td>(D_{1,CJ0})</td>
<td>(D_{1,CJ0}) is specified at (0) (V) and decreases as the reverse bias voltage increases</td>
</tr>
</tbody>
</table>

Measured Test versus AC Model Impedance Data

Figures 3 and 4 show the impedance of the 1SMB28A and NUP2105. A TVS diode’s impedance is a function of the bias voltage, as shown in Figure 3. Also, the capacitance decreases if the DC bias voltage increases, which produces a higher resonant frequency \((f_R) \). A TVS diode can be modeled as a capacitor at relatively low frequencies; however, the inductance of the IC package must be included as the frequency approaches the resonant frequency. Table 2 provides a summary of the measured impedance and the AC model parameters for the 1SMB28A and NUP2105.
The real or resistive portion of the impedance is modeled by R_S in the AC model and R_Z in the SPICE model. Resistance is a key factor in determining the power rating of the device and is a function of the method used to attach the IC package leads to the silicon die. The relatively large pad size of a SMB lead produces a large contact area at the lead-to-silicon connection that reduces the resistance. In addition, the large lead size of the SMB lowers the thermal resistance and increases the amount of thermal energy that can be dissipated through the leads onto the mounting pads of the PCB. In comparison, a SOT–23’s lead-to-silicon connection has a relatively high resistance compared to a SMB device.

The high energy of a surge pulse can increase the TVS diode’s junction temperature to a value that can be an order of magnitude larger than the ambient temperature. TVS diodes are designed to withstand high junction temperatures; however, the breakdown voltage (V_{BR}) and resistance are increased to a value higher than their nominal values. One option to simulate a high die temperature is to increase the macro-model’s R_Z value so that the simulated clamping voltage matches the bench test value at a specific pulse, such as either the 8×20 μs or 10×1000 μs surge tests. Increasing R_Z raises the simulated minimum impedance (Z_{Min}) as shown in Figure 5, but does not change the resonant frequency.
Figure 5. The Increase in the 1SMA28A’s Junction Temperature Produced by a High Energy Surge Pulse can be Modeled by Increasing the Magnitude of R_Z from the Nominal Value of 0.1 to 0.65 Ω

Capacitance and Inductance

The capacitance (C_S) and inductance (L_S) form the imaginary or reactance portion of the TVS diode’s impedance. The capacitance is proportional to the size of the silicon junction area. The SMB device houses a larger die than a SOT–23; thus, a SMB device will typically have a lower resonant frequency than a SOT–23 device. In addition, a bidirectional diode has a capacitance that is equal to half of the capacitance of an equivalent unidirectional device. Bidirectional diodes are created from two series connected unidirectional diodes; thus, the capacitance is lower than a unidirectional device. The inductance term is produced by the bonding connection between the package lead and the silicon die. The magnitude of L_S is similar for the 1SMB28A and NUP2105 TVS diodes.

Table 2. THE SMALL R_S AND LARGE C_S TERMS OF THE 1SMB28A ACCOUNT FOR THE DEVICES HIGH POWER RATING. THE SMALL CAPACITANCE OF THE NUP2105 RESULTS IN A HIGH RESONANT FREQUENCY

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package and Schematic</th>
<th>Power Rating</th>
<th>f_R (MHz)</th>
<th>Bias Voltage</th>
<th>AC Model</th>
<th>R_S (Ω)</th>
<th>L_S (nH)</th>
<th>C_S (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1SMB28A</td>
<td>SMB</td>
<td>600 W (10 × 1000 μs)</td>
<td>146</td>
<td>0 Vdc</td>
<td>Rs 0.12</td>
<td>2.44</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>276</td>
<td>28 Vdc</td>
<td>Rs 0.14</td>
<td>2.44</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>NUP2105</td>
<td>SOT–23</td>
<td>350 W (8 × 20 μs)</td>
<td>616</td>
<td>0 Vdc</td>
<td>Rs 1.28</td>
<td>2.48</td>
<td>26.4</td>
<td></td>
</tr>
</tbody>
</table>

Simulation Test Results

The clamping performance of the 1SMB28A TVS diode for the 10 × 1000 μs surge test is shown in Figure 6. The SPICE simulation used a R_Z value of 0.65 Ω instead of the 0.1 Ω resistance measured with the network analyzer. The larger resistance results in an accurate clamping voltage (V_C) for high energy surges, but will simulate a V_C that is larger than a bench measurement for relatively low energy pulses. Future enhancements of the macro-model will include the integration of a thermal model to simulate the increase in the TVS device’s junction temperature due to self heating.
Figure 6. SPICE Predicts a Maximum Clamping Voltage of 42.5 V if R_Z is equal to 0.65 Ω. The Bench Test Value is 42.4 V.

Figure 7 shows the clamping performance of the NUP2105 TVS diode for the 8×20 μs surge test. The macro-model used a R_Z value of 1.28 Ω that was determined from the AC model. The simulated V_C is relatively close to the measured value because of the shorter duration of the 8×20 μs surge in comparison with the 10×1000 μs pulse.

Figure 7. SPICE Predicts a Maximum Clamping Voltage of 39.2 V. The Bench Test Measured Value is 40.8 V.

SPICE Limitations
Macro-models provide an accurate SPICE representation of the TVS avalanche diode’s current and voltage characteristics for most applications. SPICE serves as a powerful design tool to analyze surge suppression circuits; however, simulation should not be used as a replacement for hardware development tests. A summary of the limitations of the macro-models is shown in Table 3.

Table 3. SIMULATION LIMITS OF TVS DIODE MACRO-MODELS

<table>
<thead>
<tr>
<th>Region</th>
<th>Key Design Parameter</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Forward Voltage (V_F)</td>
<td>V_F is typically specified as a maximum value at a single current point in the data sheet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The accuracy is enhanced if two typical test points are used</td>
</tr>
<tr>
<td>Leakage</td>
<td>Leakage Current (I_L)</td>
<td>I_L is modeled as a linear function of the bias voltage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measured I_L data varies as an exponential function of the bias voltage</td>
</tr>
<tr>
<td>Breakdown</td>
<td>Clamping Voltage (V_C)</td>
<td>ΔV_C due to self heating is not modeled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overcurrent failures are not modeled</td>
</tr>
</tbody>
</table>
References

APPENDIX I: MACRO-MODEL SPICE NETLISTS

1SMB28A Macro-Model
**
* 1SMB28A PSPICE macro-model
* Uni-directional TVS avalanche diode, SMB package, \(V_{BR} = 32.75 \) V
**
* Anode Cathode
.SUBCKT SMB28A 7 1
* Forward Region
* D1’s CJO term models the capacitance
D1 2 1 MDD1
.MODEL MDD1 D IS = 1.83708e−14 N = 1 XTI = 1 RS = 0.2
+ CJO = 486e−12 TT = 5e−10
**
* Leakage Region
* RL models leakage current (I_L)
* MDR temp. coef. model \(\Delta I_L/\Delta T \)
RL 1 2 MDR 5.64e+06
.MODEL MDR RES TC1 = 0 TC2 = 0
**
* Reverse Breakdown Region
* RZ models the \(I/V \) slope
* The small signal impedance is equal to 0.1 \(\Omega \)
* A RZ value of 0.65 \(\Omega \) matches the clamping voltage at max. current
* Increasing RZ models the self-heating from the energy of a surge event
RZ 2 3 0.65
D2 4 3 MDD2
.MODEL MDD2 D IS = 2.5e−15 N = 0.5
* Breakdown Voltage (\(V_{BR} \)) = \(I_{BV} \times R_{BV} \)
EV1 1 4 6 8 1
IBV 0 6 0.001
RBV 6 0 MDRBV 32750
* MDRBV temp. coef. model \(\Delta V_{BR}/\Delta T \)
.MODEL MDRBV RES TC1 = 0.00098
D3 8 0 MDD2
IT 0 8 0.001
**
* L models the lead-to-silicon connection package inductance
L 7 2 2.44e−9
* .ENDS SMB28A
**

NUP2105 Macro-Model
**
* NUP2105 PSPICE macro-model
* Bi-directional TVS avalanche diode, SOT–23 package, \(V_{BR} = 26.4 \) V
* Model simulates 1 of the 2 I/O lines
**
* D_A Cathode D_B Cathode $D_{A,B}$ Common Anode

.SUBCKT NUP2105 1 2 3
* Bidirectional devices are formed from two uni-directional devices

X1 3 1 HALFNUP2105
X2 3 2 HALFNUP2105
.ENDS NUP2105

**
* Model HALFNUP2105 represents one bi-directional pair of a dual device
* Anode Cathode

.SUBCKT HALFNUP2105 7 1
* Forward Region
* D1’s CJO term models the capacitance

D1 2 1 MDD1
.MODEL MDD1 D IS = 1.83708e−14 N = 1 XTI = 1 RS = 0.2
+ CJO = 26.4e−12 TT = 1e−08

**
* Leakage Region
* RL models leakage current (I_L)
* MDR temp. coef. model $\Delta I_{L}/\Delta T$

RL 1 2 MDR 4.32244e+08
.MODEL MDR RES TC1=0 TC2=0

**
* Reverse Breakdown Region
* RZ models the $\Delta V/\Delta V$ slope

RZ 2 3 1.28
D2 4 3 MDD2
.MODEL MDD2 D IS = 2.5e−15 N = 0.5
* Breakdown Voltage (V_{BR}) = $I_{BV} \times R_{BV}$

EV1 1 4 6 8 1
IBV 0 6 0.001
RBV 6 0 MDRBV 26357.1
* MDRBV temp. coef. model $\Delta V_{BR}/\Delta T$
.MODEL MDRBV RES TC1 = 0.00096
D3 8 0 MDD2
IT 0 8 0.001

**
* L models the lead-to-silicon connection package inductance
* L is distributed between two diodes for bi-directional diodes

L 7 2 1.24e−9

**

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. The operating parameters, including “Typicals” must be validated for each customer application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19501 E. 32nd Plwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative