ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
ECLinPS MAX ${ }^{\text {TM }}$ (SiGe) SPICE Modeling Kit

Prepared by: Casey Stys and Paul Shockman

ON Semiconductor ${ }^{\text {º }}$
http://onsemi.com

APPLICATION NOTE

Table 1. Schematics and Netlist Nomenclature

Parameter	Function Description
V_{CC}	$2.5 / 3.3 \mathrm{~V}$ for LVPECL and 0 V for LVNECL
V_{EE}	$-2.5 /-3.3 \mathrm{~V}$ for LVNECL and 0 V for LVPECL
V_{CS}	Internally Generated Voltage $\left(\mathrm{V}_{\text {EE }}+0.915 \mathrm{~V} \pm 50 \mathrm{mV}\right)$
IN	True (+) Input to BUFFER
IN	Inverted (-) Input to BUFFER
Q	True (+) Output of BUFFER
\bar{Q}	Inverted (-) Output of BUFFER
INT	Internal True (+) Input to Output Buffer
INT	Internal Invert (-) Input to Output Buffer

The subcircuit models, such as input or output buffers, ESD and package simulate only device input or output paths. When used with interconnect models, a complete signal path may be modeled as shown in Figure 1.

Figure 1. Interconnect Model Template
For device modeling, the behavioral LOGIC or gate functionality is not modeled (see Figure 2. DEVICE Model Template)

Figure 2. DEVICE Model Template

Package

Models for various package types have been included to improve the accuracy of the system interconnect model (Table 2).

Table 2. Available Package Models

Package	Model
SOIC-8	Appendix B (Figure 11 and Table 4)
TSSOP-8	Appendix B (Figure 12 and Table 5)
QFN-16	Figure 9

The package model represents the parasitics as they are measured at a significant distance from an AC ground pin. The package models should be placed on all external inputs of an input model, all external outputs of an output model and the V_{CC} line. Since the current in the V_{EE} pin is a constant, a package model for V_{EE} pin is not necessary. Note an internal V_{CS} voltage does not require a package model. To speed up the simulation process, simplified package models have been used.

Input Buffer

The input buffer schematics and netlists present the various input structures for ECLinPS MAX family devices. The schematics and netlists include ESD and package model parasitics for accuracy.

Output Buffer

Output buffer schematics and netlists models are provided. The package model parasitics has been added for accuracy. The output buffer models typically show internal differential inputs driven by INT and INT. Outputs should always be simulated with both output lines properly terminated, even when only one line or single ended use is intended. This will balance the output buffer's load.

For correlation, a typical output waveform seen at the input of the receiver, is shown in Figure 10.

SPICE Netlist

The netlists are organized as a subcircuit. In each subcircuit model netlist, the model name should be followed by a list of external node interconnects. When copying a "SUBCKT" netlist files to your text editor, use Adobe ${ }^{\circledR}$ Acrobat ${ }^{\circledR}$ Reader 4.0 or higher to ensure proper character conversion.

SPICE Parameter Information

In addition to the schematics and netlists there is a listing of the SPICE parameters for the transistors and diodes referenced in the schematics and netlists found provided in APPENDIX A. These parameters represent a typical case device of the transistor or diode. Varying the typical parameters will affect the DC and AC performance of the structures and is not recommended. Modeling of device actual delay time is not the intention of this document.

The performance levels may be varied by methods and discussed in the next section. The resistors referenced in the schematics are polysilicon and have negligible parasitic capacitance in the real circuit. The schematics display only devices needed in the SPICE netlists.

Modeling Information

The bias drivers for the devices are not included as they are unnecessary for interconnect simulations and their use results in a large increase in model complexity and simulation time. The internal reference voltages $\left(\mathrm{V}_{\mathrm{BB}}\right.$, V_{CS}, etc.) should be modeled with ideal constant voltage sources. Output and input levels of ECLinPS MAX devices generally vary in a one to one ratio with the power supply; and remain relatively constant over temperature. Note the V_{CS} supply is always relative to V_{EE}, the most negative supply. The output schematics and SPICE parameters include a typical waveform, for simulation correlation. Inclusion of ESD and package models typically will add about $5.0 \mathrm{ps}-7.0 \mathrm{ps}$ to the output waveform rise and fall time. Simple adjustments made to the models may permit
output characteristics to emulate conditions at or near the performance corners of the data sheet specifications. Consistent, repeatable cross-point voltages of 50% should be maintained.

To Adjust Rise and Fall Times, t_{r} and t_{f}

Produce the desired variant rise and fall times output slew rates by adjusting collector load resistors. This V_{CS} voltage determines the tail current in the output differential affecting the t_{r} and t_{f} of the output.

To Adjust the V_{OH}

Adjust the V_{OH} and V_{OL} level together by varying V_{CC}. The output levels will follow changes in V_{CC} at a $1: 1$ ratio.

To Adjust the V_{OL}

Adjust the V_{OL} level independently of the V_{OH} level by adjusting increasing the collector load resistance. Note the V_{OH} level will also by affected due to an $\mathrm{I}_{\mathrm{BASE}} * \mathrm{R}$ drop across the collector load resistor. The V_{OL} can be changed by varying the V_{CS} supply which will also affect gate current through the current source resistor.
$\overline{\text { MR }}$ INPUT BUFFERS at the voltage divider BIAS feeding one side of the differential. This remains at $\mathrm{V}_{\mathrm{CC}} / 2$ forcing the detect threshold to ratiometrically change with V_{CC}.

When left floating open, the $\overline{\mathrm{EN}}$ and SELx inputs will be forced to a default state of LOW by the internal $75 \mathrm{k} \Omega$ pulldown resistor to V_{EE}, relative to the $\mathrm{V}_{\mathrm{CC}} / 2$ BIAS voltage on the other side of the differential. The $\overline{\mathrm{MR}}$ input, when left floating open, will be forced to a default state of HIGH by the internal $75 \mathrm{k} \Omega$ pullup resistor to V_{CC}.

6L11 and 6L16

Inputs, when left floating open, will not be forced to a determined default state. Precautionary considerations may be needed to prevent spontaneous self oscillation of the device.

Summary

The information included in this kit provides adequate information to run a SPICE level system interconnect simulation. The block diagram in Figure 2 illustrates a typical situation, which can be modeled using the information in this kit.

Device Specifics

6L239
An exception to the general rule of "levels are relative to V_{CC} " is found in the internal input node of $\overline{\text { EN }}$, SELx, and

Figure 3. Typical Application for I/O SPICE Modeling Kit
Device input or output models are presented in Table 3.
Table 3. ECLinPS MAX Input/Output Buffer Selector Guide

Device	Function	Pin	Description	Model
NB6L11	2.5 V / 3.3 V Multilevel Input to Differential LVNECL/LVPECL 1:2 Clock or Data Fanout Buffer/Translator	6, 7	INPUT	INBUF_01
		1, 2, 3,4	OUTPUT	OBUF_01
NB6L16	2.5 V / 3.3 V Multilevel Input to Differential LVNECL/LVPECL Clock or Data Receiver/Buffer/Translator	2, 3	INPUT	INBUF_01
		6, 7	OUTPUT	OBUF_01
NB6L239	2.5 V / 3.3 V Any Differential Clock IN to Differential LVPECL OUT DIV by 1/2/4/8/16 Clock Divider	5, 6, 7, 14, 15	EN and SELx INPUT	EN_SEL
		16	$\overline{\mathrm{MR}}$ INPUT	$\overline{\mathrm{MR}}$
		1, 2, 3	CLKs and VDT INPUT	CLK_IN
		9, 10, 11, 12	OUTPUT	OBUF_01
NB6N239S	3.3 V, 3.0 GHz Any Differential Clock IN to LVDS OUT DIV by $1 / 2 / 4 / 8$, DIV by 2/4/8/16 Clock Divider	5, 6, 7, 14, 15	Single Ended Inputs	INBUF_01
		16	$\overline{\mathrm{MR}}$ INPUT	$\overline{\mathrm{MR}}$
		2, 3	CLKs and VDT INPUT	INBUF_01
		9, 10, 11, 12	LVDS OUTPUT	OBUF_02

INBUF_01 INPUT BUFFER

Figure 4. INBUF_01 Input Buffer

V_V1	D 0		
V_V2	DB 0		
V_VCC	VCC	0	$3.3 V d c$
V_VCS	VCS	0	$.855 V d c$

+PULSE 1.5 2.0 1n 0.025n 0.025n 0.475n 1n
+PULSE 2.0 1.5 1n $0.025 n 0.025 n 0.475 n 1 n$
.SUBCKT INBUF_01

C_C101a	010151.12 f
C_C101b	010362.48 f
C_C102a	010251.12 f
C_C102b	010462.48 f
D_D101d	0103 ESD
D_D101u	103 VCC ESD
D_D102d	0104 ESD
D_D102u	104 VCC ESD
L_L101	101103753.3 pH
L_L102	102104753.3 pH
Q_Q101	107105109 TNSGB
Q_Q102	108106109 TNSGB
Q_Q103a	109 VCS 110 TNSGB
Q_Q103b	109 VCS 110 TNSGB
R_R101	101 D 39.5m
R_R102	102 DB 39.5m

AND8157/D

R_R103d	103		0

EN AND SELx INPUT BUFFER

Figure 5. EN and SELx Input Buffer

V_In IN 0	
V_VCC	VCC 03.3 Vdc
V_VCS	VCS 00.855 Vdc
+PULSE	$01.251 n 0.025 n 0.0$
. SUBCKT ENb_SEL	
C_C101a	010251.12 f
C_C101b	010362.48 f
D_D101d	0103 ESD
D_D101u	103 VCC ESD
D_D102d	0103 ESD
D_D102u	103 VCC ESD
L_L101	102103753.3 pH
Q_Q101	105104107 TNSGB
Q_Q102	106108107 TNSGB
Q_Q103	107 VCS 109 TNSGB
R_R101	102 IN 39.5m
R_R102	103075 K
R_R103	10310493
R_R104	105 VCC 750
R_R105	106 VCC 750
R_R106	VCC 108 18K
R_R107	108018 K
R_R108	0108200
.END ENb_SEL	

MR INPUT BUFFER

Figure 6. MR Input Buffer

```
+PULSE 0.8 2.0 1n 0.025n 0.025n 0.475n 1n
V_V1 IN 0
V_VCC vcc 0 3.3Vdc
V_VCS VCS 0 .855Vdc
\begin{tabular}{|c|c|}
\hline . SUBCKT & \\
\hline C_C101a & 010251.12 f \\
\hline C_C101b & 010362.48 f \\
\hline D_D101d & 0103 ESD \\
\hline D_D101u & 103 VCC ESD \\
\hline L_L101 & 102103753.3 pH \\
\hline Q_Q101 & 105104108 TNSGB \\
\hline Q_Q102 & VCC 107108 TNSGB \\
\hline Q_Q103a & 108 VCS 109 TNSGB \\
\hline Q_Q103b & 108 VCS 109 TNSGB \\
\hline R_R101 & 102 IN 39.5m \\
\hline R_R102 & VCC 103 75K \\
\hline R_R103 & 10310493 \\
\hline R_R104 & 105 VCC 375 \\
\hline R_R106 & VCC 107 18K \\
\hline R_R107 & 107 0 18K \\
\hline R_R108 & 0109100 \\
\hline .END .MRb & \\
\hline
\end{tabular}
```

CLKS AND VTD INPUT BUFFER

Figure 7. CLKs and VTD Input Buffer

```
+PULSE 2.1 2.3 1n 0.025n 0.025n 0.475n 1n
+PULSE 2.3 2.1 1n 0.025n 0.025n 0.475n 1n
V_TD TD 0 1.3Vdc
V_VCC VCC 0 3.3Vdc
V_VCS VCS 0 0.915Vdc
V_VIN IN O
V_VINb INB 0
.SUBCKT CLK_IN
\begin{tabular}{lll} 
C_C101a & 0 & 103 \\
\(51.12 f\) \\
C_C101b & 0 & 104 \\
\(62.48 f\) \\
C_C102a & 0 & 105 \\
C_C102b & 0 & 106 \\
C_CD & \(.48 f\) \\
D_D101u & TD VCC ESD \\
D_D102u & TD VCC ESD \\
D_D103d & 0 TD ESD
\end{tabular}
```


AND8157/D

D_D104d	0 TD ESD
D_D105u	104 VCC ESD
D_D106d	0104 ESD
D_D107u	106 VCC ESD
D_D108d	0106 ESD
L_L101	103104753.3 pH
L_L102	105106753.3 pH
Q_Q101	109107111 TNSGB
Q_Q102	110108111 TNSGB
Q_Q103a	111 VCS 112 TNSGB
Q_Q103b	111 VCS 112 TNSGB
R_R101	103 IN 39.5m
R_R102	105 INB 39.5m
R_R103	104 TD 50
R_R104	TD 10650
R_R105	1041071600
R_R106	VCC 1071600
R_R107	1061081600
R_R108	VCC 1081600
R_R109	109 VCC 750
R_R110	110 VCC 750
R_R111	0112200
.END CLK_IN	

INBUF_01 INPUT BUFFER

Figure 8. INBUF01 Input Buffer

V_V1	D 0
V_V2	DB 0
V_VCC	Vcc 03.3 Vdc
V_VCS	VCS 0.855 Vdc
+PULSE	1.52 .01 n 0.025 n 0.025
+PULSE	2.01 .51 n 0.025 n 0.025
. SUBCKT	INBUF_01
C_C101a	010151.12 f
C_C101b	010362.48 f
C_C102a	010251.12 f
C_C102b	010462.48 f
D_D101d	0103 ESD
D_D101u	103 VCC ESD
D_D102d	0104 ESD
D_D102u	104 VCC ESD
L_L101	101103753.3 pH
L_L102	102104753.3 pH
Q_Q101	107105109 TNSGB
Q_Q102	108106109 TNSGB
Q_Q103a	109 VCS 110 TNSGB
Q_Q103b	109 VCS 110 TNSGB
R_R101	101 D 39.5m
R_R102	102 DB 39.5m

AND8157/D

R_R103d	103		0

OBUF_01 OUTPUT BUFFER DRIVING 6L239 CLKS AND VTD INPUT BUFFER

Figure 9. OBUF_01 Output Buffer driving 6L239 CLKs and VTD Input Buffer

AND8157/D

R_R108	VCC	108	1600			
R_R109	109	VCC	750			
R_R110	110	VCC	750			
R_R111	0	112	200			
T_T101	99	0	101	0	$\mathrm{Z} 0=50$	TD=80ps
T_T102	100	0	102	0	$\mathrm{Z} 0=50$	TD=80ps
.END CLK_INBUF						

Figure 10. Typical OBUF_01 OUTPUT Waveform driving 6L239 CLK/CLK INPUT BUFFER

OBUF_02 OUTPUT BUFFER DRIVING STANDARD LVDS TERMINATION

3.3V LVPECL MODE OPERATION at 1.66 GHz

Figure 11. OBUF_02 Output Buffer driving standard LVDS termination

Figure 12. Typical OBUF_02 OUTPUT BUFFER Waveform driving standard LVDS termination

AND8157/D

APPENDIX A

************* Transistor and Diode Models for ECLinPS MAX **************
.MODEL TNSGB NPN (IS=2.18e-17 BF=179 NF=1 VAF=96.5 IKF=2.42e-02

+ ISE=3.83e-16 NE=2.5 BR=20.4 VAR=2.76 IKR=1.98e-03 ISC=2.91e-17
$+\mathrm{NC}=1.426 \mathrm{RB}=55 \mathrm{IRB}=1.12 \mathrm{e}-04 \mathrm{RBM}=48 \mathrm{RE}=6 \mathrm{RC}=11 \mathrm{CJE}=7.98 \mathrm{e}-15$
$+\mathrm{VJE}=.8867 \mathrm{MJE}=.2868 \mathrm{TF}=2.00 \mathrm{e}-12 \mathrm{ITF}=0.4 \mathrm{e}-02 \mathrm{XTF}=0.7 \mathrm{VTF}=0.6 \mathrm{PTF}=20 \mathrm{TR}=0.5 \mathrm{e}-9$
$+\mathrm{CJC}=4.55 \mathrm{e}-15 \mathrm{VJC}=0.632 \mathrm{MJC}=0.301 \mathrm{XCJC}=0.3 \mathrm{CJS}=4.71 \mathrm{e}-15 \mathrm{VJS}=.4193 \mathrm{MJS}=0.256$
$+\mathrm{EG}=1.119 \mathrm{XTI}=3.999 \mathrm{XTB}=0.8826 \mathrm{FC}=0.9$)
$* *$
.MODEL TNSGC NPN (IS=1.47e-16 BF=180 NF=1 VAF=96.3 IKF=1.62e-01
+ ISE=2.96e-15 NE=2.5 BR=20.2 VAR=2.76 IKR=1.34e-02 ISC=2.14e-16
$+\mathrm{NC}=1.426 \mathrm{RB}=25 \mathrm{IRB}=1.50 \mathrm{e}-03 \mathrm{RBM}=4 \mathrm{RE}=1 \mathrm{RC}=7 \mathrm{CJE}=6.34 \mathrm{e}-14$
$+\mathrm{VJE}=.8867 \mathrm{MJE}=.2868 \mathrm{TF}=2.00 \mathrm{e}-12 \mathrm{ITF}=0.25 \mathrm{e}-01 \mathrm{XTF}=0.7 \mathrm{VTF}=0.35 \mathrm{PTF}=20 \mathrm{TR}=0.5 \mathrm{e}-9$
$+\mathrm{CJC}=4.08 \mathrm{e}-14 \mathrm{VJC}=0.632 \mathrm{MJC}=0.301 \mathrm{XCJC}=.3 \mathrm{CJS}=11.12 \mathrm{e}-15 \mathrm{VJS}=.4193 \mathrm{MJS}=0.256$
$+\mathrm{EG}=1.119 \mathrm{XTI}=3.999 \mathrm{XTB}=0.8826 \mathrm{FC}=0.9$)

.MODEL ESD D (IS=9.99E-21 $\mathrm{CJO}=6.52 \mathrm{E}-14 \quad \mathrm{RS}=50.1 \quad \mathrm{VJ}=.82 \quad \mathrm{M}=.25 \quad \mathrm{BV}=35)$

APPENDIX B

Figure 13. Schematic Model of 8 Id SOIC Packge

Table 4.

Package: 8-Lead SOIC (D)	
Component	Value
RWB	0.05Ω
LWB	1.36 nH
LD	.547 nH
C	0.188 pF

Figure 14. Schematic Model of 8 Id TSSOP Packge

Table 5.

Package: 8-Lead TSSOP (DT)	
Component	Value
RWB	$.039 \Omega$
LWB	1.36 nH
LD	.547 nH
C	.188 pF

ECLinPS MAX is a trademark of Semiconductor Components Industries, LLC (SCILLC).
Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated.
ON Semiconductor and 0 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada
Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

