Introduction

New ON Semiconductor ChipFETs in the leadless 1206A package features the same outline as popular 1206A resistors and capacitors but provide all the performance of true power semiconductor devices. The 1206A ChipFET has the same footprint as the body of the LITTLE FOOT® TSOP–6, and can be thought of as a leadless TSOP–6 for purposes of visualizing board area, but its thermal performance bears comparison with the much larger SO–8.

This technical note discusses the dual ChipFET 1206A pin–out, package outline, pad patterns, evaluation board layout, and thermal performance.

Pin–Out

Figure 1 shows the pin–out description and Pin 1 identification for dual–channel 1206A ChipFET device. The pin–out is similar to the TSOP–6 configuration, with two additional drain pins to enhance power dissipation and thus thermal performance. The legs of the device are very short, again helping to reduce the thermal path to the external heatsink/pcb and allowing a larger die to be fitted in the device if necessary.

Basic Pad Patterns

The basic pad layout with dimensions are shown in Figure 2, on the following page. This is sufficient for low power dissipation MOSFET applications, but power semiconductor performance requires a greater copper pad area, particularly for the drain leads.

The minimum recommended pad pattern shown in Figure 3 improves the thermal area of the drain connections (pins 5 and 6, pins 7 and 8) while remaining within the confines of the basic footprint. The drain copper area is 0.0019 sp. in. or 1.22 sq. mm. This will assist the power dissipation path away from the device (through the copper leadframe) and into the board and exterior chassis (if applicable) for the dual device. The addition of a further copper area and/or the addition of vias to other board layers will enhance the performance still further. An example of this method is implemented on the ON Semiconductor Evaluation Board described in the next section (Figure 4).
The ON Semiconductor Evaluation Board for the Dual 1206A

The dual ChipFET 1206A evaluation board measures 0.6 in. by 0.5 in. Its copper pad pattern consists of an increased pad area around each of the two drains leads on the top side—approximately 0.0246 sq. in. or 15.87 sq. mm—and vias added through to the underside of the board, again with a maximized copper pad area of approximately the board-size dimensions, split into two for each of the drains. The outer package outline is for the 8-pin DIP, which will allow test sockets to be used to assist in testing.

The thermal performance of the 1206A on this board has been measured with the results following on the next page. The testing included comparison with the minimum recommended footprint on the evaluation board-size pcb and the industry standard one-inch square FR4 pcb with copper on both sides of the board.

Thermal Performance

Junction–to–Foot Thermal Resistance (the Package Performance)

Thermal performance for the 1206A ChipFET measured as junction–to–foot thermal resistance is 30°C/W typical, 40°C/W maximum for the dual device. The “foot” is the drain lead of the device as it connects with the body. This is indexical to the dual SO–8 package $R_{θja}$ performance, a feat made possible by the shortening the leads to the where they become only a small part of the total footprint area.
Junction–to–Ambient Thermal Resistance (dependent on the pcb size)

The typical $R_{\text{θ ja}}$ for the dual–channel 1206A ChipFET is 90°C/W steady state, identical to the SO–8. Maximum ratings are 110°C/W for both the 1206A and SO–8. Both packages have comparable thermal performance on the 1” square pcb footprint with the 1206A dual package having a quarter of the body area, a significant factor when considering board area.

Testing

To aid comparison further, Figure 5 illustrates ChipFET 1206A dual thermal performance on two different board sizes and three different pad patterns. The results display the thermal performance out to the steady state and produce a graphic account on how to increased copper pad area for the drain connections can enhance thermal performance. The measured steady state values of $R_{\text{θ ja}}$ for the Dual 1206A ChipFET are:

<table>
<thead>
<tr>
<th>Pad Pattern Description</th>
<th>$R_{\text{θ ja}}$ (°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum recommended pad pattern (see Figure 3) on the evaluation board size of 0.5 in. x 0.6 in.</td>
<td>185°C/W</td>
</tr>
<tr>
<td>The evaluation board with the pad pattern described on Figure 4.</td>
<td>128°C/W</td>
</tr>
<tr>
<td>Industry standard 1” square pcb with maximum copper both sides.</td>
<td>90°C/W</td>
</tr>
</tbody>
</table>

The results show that a major reduction can be made in the thermal resistance by increasing the copper drain area. In this example, a 57°C/W reduction was achieved without having to increased the size of the board. If increasing board size is an option, a further 38°C/W reduction was obtained by maximizing the copper from the drain on the larger 1” square pcb.

Summary

The Thermal results for the dual–channel 1206A ChipFET package display identical power dissipation performance to the SO–8 with a footprint reduction of 80%. Careful design of the package has allowed for this performance to be achieved. The short leads allow the die size to be maximized and thermal resistance to be reduced within the confines of the TSOP–6 body size.

Associated Document

Figure 5. Dual 1206–8 ChipFET
PACKAGE DIMENSIONS

ChipFET

CASE 1206A

ISSUE B

<table>
<thead>
<tr>
<th>DIM</th>
<th>MIN</th>
<th>MAX</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.55</td>
<td>1.70</td>
<td>0.061</td>
<td>0.067</td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
<td>0.35</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>C</td>
<td>0.65</td>
<td>0.67</td>
<td>0.025</td>
<td>0.028</td>
</tr>
<tr>
<td>D</td>
<td>0.10</td>
<td>0.20</td>
<td>0.004</td>
<td>0.008</td>
</tr>
<tr>
<td>G</td>
<td>0.55</td>
<td>0.60</td>
<td>0.022</td>
<td>0.028</td>
</tr>
<tr>
<td>J</td>
<td>0.50</td>
<td>0.60</td>
<td>0.017</td>
<td>0.020</td>
</tr>
<tr>
<td>K</td>
<td>0.50</td>
<td>0.75</td>
<td>0.017</td>
<td>0.020</td>
</tr>
<tr>
<td>L</td>
<td>0.50</td>
<td>0.60</td>
<td>0.022</td>
<td>0.028</td>
</tr>
<tr>
<td>S</td>
<td>0.75</td>
<td>0.90</td>
<td>0.076</td>
<td>0.090</td>
</tr>
</tbody>
</table>

NOTES:

2. CONTROLLING DIMENSION: MILLIMETER.
3. MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM PER SIDE.
4. LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL AND VERTICAL SHALL NOT EXCEED 0.00 MM.
5. DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE BURRS.
6. NO MOLD FLASH ALLOWED ON THE TOP AND BOTTOM LEAD SURFACE.
7. 126A-01 OBSOLETE. NEW STANDARD IS 1206A.

ChipFET is a trademark of Vishay Siliconix. LITTLE FOOT is a registered trademark of Vishay Siliconix.

PUBLICATION ORDERING INFORMATION

CENTRAL/SOUTH AMERICA:

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit–spanish@hibbertco.com

EUROPE:

Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Fax: 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com

Email: ONlit–german@hibbertco.com

EUROPEAN TOLL–FREE ACCESS: 00–800–4422–3781

*Available from Germany, France, Italy, UK, Ireland

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.