ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Options for Lowering the Capacitance in TSPD Devices

Prepared by: Alfredo Ochoa, Alex Lara, and Gabriel Gonzalez BPD Applications Engineers

INTRODUCTION

In some of the Telecom applications, the capacitance is a critical factor because it can cause disturbances and bad resolution in the telecom systems. The Gas Discharge Tube (GDT) is one of the most traditional devices used for telecom protection because the typical capacitance values are from 1 to 1.25 pf. However, as known, they are relatively slow, and unfortunately, some gas tubes' electrodes burn out after a few hundred hits making them inefficient and unreliable.

Different from the GDTs, the Thyristor Surge Protective Device (TSPD) offers a very reliable operation and consistency in terms of switching. The TSPD is capable of draining a surge current pulse to ground whenever a transient voltage appears between its two terminals (this occurs when a specific maximum voltage, delimited by the maximum breakover voltage of the device, is reached). Nevertheless, the capacitance of the TSPDs is higher than the capacitance of the GDTs since the TSPDs are semiconductor devices. A certain capacitance value will be

ON Semiconductor

http://onsemi.com

APPLICATION NOTE

always be present, and it will depend on the structure and die size of each semiconductor device. Therefore, the main purpose of this note is to describe some solutions for lowering the capacitance in the TSPD devices manufactured by ON Semiconductor.

INDUSTRIAL STANDARD Bellcore GR-1089-CORE and GR-974-CORE

According to the industrial standard, Bellcore GR–1089–CORE, the levels of protection to be covered by the TSPDs are classified in three main categories:

- Primary Protection (Central Offices, Switchboards)
- Secondary Protection (Modems, Internet Hardware, COAX, and HFC)
- Station protection (Modems, Home telephone sets, Voicemail)

This industrial standard also establishes that each of the previous categories have different lightning surge ratings depending on the telephone lines' density and the kind of applications. These surge ratings are described in the following tables:

Standard Number	Peak Surge Voltage (V)	Voltage Waveform (µs)	Current Waveform (μs)	Rating IPP (A)
Bellcore GR–1089–CORE First Level	2500 1000	2 x 10 10 x 1000	2 x 10 10 x 1000	500 100
Bellcore GR–1089–CORE Second Level	5000	2 x 10	2 x 10	500

Table 1. Primary Protection

Table 2. Secondary Protection

Standard Number	Peak Surge Voltage (V)	Voltage Waveform (μs)	Current Waveform (μs)	Rating IPP (A)
Bellcore GR–1089–CORE First Level	2500 1000	2 x 10 10 x 1000	2 x 10 10 x 1000	150 50
Bellcore GR–1089–CORE Second Level	5000	2 x 10	2 x 10	150

Table 3. Station Protection

Standard Number	Peak Surge Voltage (V)	Voltage Waveform (μs)	Current Waveform (μs)	Rating IPP (A)
Bellcore GR-1089-CORE	1000	10 x 1000	10 x 1000	300
Bellcore GR-1089-CORE	2000	1.2 x 50	8 x 20	1000

Additionally, the industrial standard Bellcore GR–974–CORE establishes that the capacitance of the Telecommunications Line Protector Units (TLPUs) between terminals and for each terminal to ground, shall be a maximum of 200 pf when measured at 1 MHz with a

1 volt test signal voltage and a 0 volt dc bias. The actual TSPDs manufactured by ON Semiconductor (MMT05B230, 260, 310T3, and MMT10B230, 260, and 310T3 series) offer a capacitance value lower than 200 pf, their typical values are shown below:

Table	4.	Secondary	Protection
14010	•••	oooonaary	

	1 Vrms @ 1 MHz			15 mVrms @ 1 MHz		
Dovice Number	0 V	1.5 V	2 V	0 V	1.5 V	2 V
Device Number	(pf)	(pf)	(pf)	(pf)	(pf)	(pf)
MMT05B230T3	41	36	35	51	40	38
MMT05B260T3	39	33	32	48	37	36
MMT05B310T3	36	31	30	45	35	34

	1 Vrms @ 1 MHz			15 mVrms @ 1 MHz		
Dovico Numbor	0 V	1.5 V	2 V	0 V	1.5 V	2 V
Device Number	(pf)	(pf)	(pf)	(pf)	(pf)	(pf)
MMT10B230T3	149	128	124	185	139	66
MMT10B260T3	141	122	118	168	126	60
MMT10B310T3	130	111	108	159	120	55

Table 5. Primary Protection

However, there are some applications in which the capacitance is required to be much lower than 200 pf. For those applications, it has been validated that the concepts shown in the figures below are good options to follow:

Option 1

Option 1

This option is only considering one arrangement of two diodes, MUR120, connected in inverse–parallel in series with the TSPD. The total capacitance value of the complete arrangement, including the TSPD, could be theoretically calculated by using the following formulas:

- Capacitance in parallel: CT = C1 + C2 + ... + Cn
- Capacitance in series: 1/CT = (1/C1) + (1/C2) + + (1/Cn)

Based on these formulas and knowing that the typical capacitance value of a diode, MUR120, measured at 15m Vrms @ 1 MHz (0 Vdc bias) is 46 pf, the total capacitance for the arrangement could be calculated as:

Diodes || capacitance = 46 pf + 46 pf = 92 pf MMT10B230T3 (TSPD) = 185 pf therefore, the total capacitance = (1/CT) = (1/92) + (1/185) = 61.4440 pf.

In addition to the theoretical calculations, this option can be validated by measuring the arrangement through an LCR METER (HP 4284A), which would measure similar readings of capacitance (refer to the values in Table 6 and Table 7 below).

	1 Vrms @ 1 MHz (Option 1)			15m Vrms @ 1 MHz (Option 1)		
Davias Number	0 V	1.5 V	2 V	0 V	1.5 V	2 V
Device Number	(pf)	(pf)	(pf)	(pf)	(pf)	(pf)
MMT05B230T3	32	28	27	32	28	27
MMT05B260T3	30	26	25	30	26	25
MMT05B310T3	28	24	23	28	24	23

Table 6. Secondary Protection

Tabla	7	Primary	Protection
Table	1.	Filliary	FIOLECTION

	1 Vr	ms @ 1 MHz (Optic	on 1)	15m Vrms @ 1 MHz (Option 1)		
Dovice Number	0 V	1.5 V	2 V	0 V	1.5 V	2 V
Device Number	(pf)	(pf)	(pf)	(pf)	(pf)	(pf)
MMT10B230T3	102	85	82	62	60	58
MMT10B260T3	97	81	78	59	57	55
MMT10B310T3	89	74	71	54	52	50

Based on the previous capacitance measurements, it is possible to observe that the theoretical calculations made for MMT10B230T3, connected in series with two diodes, MUR120, replicates with the real capacitance measurements done in the same arrangement through the LCR METER. The theory resulted in a capacitance value of 61.44 pf, while the real measure resulted in 62 pf, which represents almost the same value of capacitance.

Option 2

Option 2

In the same way than in the option 1, the option 2 shows how it could be possible to reduce even more the capacitance value of a TSPD and it is basically based in the same principal than in the option 1, the only difference is that this option contemplates to connect two arrangements of diodes MUR120 in series with the TSPD thereby the capacitance of the complete arrangement would be significantly reduced.

In a similar way than for the option 1, the capacitance value of the option 2 could be theoretically calculated by using the same formulas previously mentioned:

- Capacitance in parallel: CT = C1 + C2 + ... + Cn
- Capacitance in series: $1/CT = (1/C1) + (1/C2) + \dots + (1/Cn)$

let's take the same example than for the option 1:

Diodes || capacitance = 46 pf + 46 pf = 92 pf (arrangement 1)

Diodes || capacitance = 46 pf + 46 pf = 92 pf (arrangement 2)

MMT10B230T3 (TSPD) = 185 pf

therefore, the total capacitance = (1/CT) = (1/92) + (1/92) + (1/185) = 36.83 pf.

This option can also be validated by measuring the would measurangement through an LCR METER (HP 4284A), which values shown Table 8. Secondary Protection

would measure similar readings of capacitance (refer to the values shown in Table 8 and Table 9 below.

	1 Vrms @ 1 MHz (Option 2)			15 mVrms @ 1 MHz (Option 2)		
Dovice Number	0 V	1.5 V	2 V	0 V	1.5 V	2 V
Device Number	(pf)	(pf)	(pf)	(pf)	(pf)	(pf)
MMT05B230T3	25	22	21	25	23	22
MMT05B260T3	24	20	19	24	21	20
MMT05B310T3	22	19	18	22	20	19

			-			
	1 Vrms @ 1 MHz (Option 1)			15 mVrms @ 1 MHz (Option 2)		
Davias Number	0 V	1.5 V	2 V	0 V	1.5 V	2 V
Device Number	(pf)	(pf)	(pf)	(pf)	(pf)	(pf)
MMT10B230T3	53	46	45	38	37	36
MMT10B260T3	50	44	43	36	35	34
MMT10B310T3	46	40	39	33	32	31

Table 9. Primary Protection

Based on the previous capacitance measurements, it is possible to observe that the theoretical calculations made for this option (MMT10B230T3 connected in series with two diodes, MUR120) replicate with the real capacitance measurements done in the same arrangement through the LCR METER. The theory resulted in a capacitance value of 36.83 pf, while the real measure resulted in 38 pf, which represents almost the same value of capacitance.

In addition to the previous capacitance measurements, it is also very important to consider and validate the surge capability of the diodes, MUR120, under the 10 x 1000 μ sec waveform to establish whether the diodes are able to cover the ratings for secondary and primary protection or not. Based in this, a surge of 10 x 1000 μ sec characterization was done in a sample of ten diodes, MUR120, to check their behavior. The surge stand point and the results are shown in the table below:

Table 10.	Surge	Capability	of	the	Diodes
-----------	-------	------------	----	-----	--------

	Surge Current 10 x 1000 μsec							
	50 A	75 A	100 A	125 A	150 A	175 A	200 A	225 A
Waveform	Fail/Sample	Fail/Sample	Fail/Sample	Fail/Sample	Fail/Sample	Fail/Sample	Fail/Sample	Fail/Sample
10 x 1000 µsec	0/10	0/10	0/10	0/10	0/10	2/10	6/10	9/10

Based on these results, it could be established that the diodes, MUR series, would be able to cover the surge ratings needed for the two series of TSPD devices that ON Semiconductor manufactures (MMT05B230T3 and MMT10B230T3 series).

Therefore, as a reference, the most common TSPD configuration used to protect a telecom system of two wires (TIP and Ring) is shown below:

- If it is used, MMT05B230T3 devices, the capacitance between each terminal to ground would be in the order of 42 pf when measured at 1 Vrms @ 1 MHz, 0 Vdc.
- If it is used, MMT10B230T3 devices, the capacitance between each terminal to ground would be in the order of 149 pf when measured at 1 Vrms @ 1 MHz, 0 Vdc.

For this configuration, the capacitance of the Telecommunications Line Protector Units (TLPUs) for each terminal to ground is lower than 200 pf when measured at 1 MHz with a 1 volt test signal voltage and a

Option 1

Option 2

0 volt dc bias (which is within the range established by the industrial standard, Bellcore GR–974–CORE). However, to lower the capacitance value, follow either the Option 1 or Option 2:

- If it is used, MMT05B230T3 devices, the capacitance between each terminal to ground would be in the order of 32 pf when measured at 1 Vrms @ 1 MHz, 0 Vdc which represents a lower value than the one from the original configuration.
- If it is used, MMT10B230T3 devices, the capacitance between each terminal to ground would be in the order of 102 pf when measured at 1 Vrms @ 1 MHz, 0 Vdc which also represents a lower value than the one from the original configuration.

- If it is used, MMT05B230T3 devices, the capacitance between each terminal to ground would be in the order of 25 pf when measured at 1 Vrms @ 1 MHz, 0 Vdc which represents a lower value than the one from the configuration of Option 1.
- If it is used, MMT10B230T3 devices, the capacitance between each terminal to ground would be in the order of 53 pf when measured at 1 Vrms @ 1 MHz, 0 Vdc which represents a lower value than the one from the configuration of Option 1.

The two options show how the capacitance value of each TSPD is lowered by connecting diodes in series with them. The functionality of the circuit is similar in both options since the TSPD devices will be acting as open circuits whenever the signal voltage in the Tip and Ring lines are lower than their VBO. Typically, the voltage in the Tip and Ring lines is between 50 V and 140 V, depending on the kind of application. If a transient voltage occurs in any of the two telecom lines (Tip or Ring), the corresponding TSPD device will be triggered draining the surge current to ground and protecting the Telecom equipment. As soon as the surge current drops below the IH value of the TSPD, it will to to the off–state and will then be ready to act again if another transient voltage occurs. It is important to mention

that the diodes would be driving the same surge current as the TSPD devices. The TSPD will be operating anytime the VBO is reached, and will not get damaged if the maximum surge current rating is not exceeded.

In summary, there are two options to lower the capacitance of the TLPUs in applications in which the capacitance value is critical. It is important to mention that designers should take into account that extreme environment temperatures could affect the surge performance of the diodes. It is a fact that they can operate between 15°C to 40°C, so to use any of these concepts out of this temperature range, it would be necessary to do additional surge characterizations.

<u>Notes</u>

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
- Email: ONlit-french@hibbertco.com English Phone: (+1) 303–308–7142 (Mon-Fri 12:00pm to 5:00pm GMT)
- Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.