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Abstract

In today’s world of high speed, high power processors,
there is a great demand put on the design of the power
supply for these devices. There is the need for regulation
down to low voltages with large currents that must have
response times in the microseconds for changing loads. The
lower voltage levels also demand that the “noise” on the
output be extremely small. Transient response and gain
peaking will determine the magnitude of these factors.
Closed loop response of the regulator design thus becomes
more of a critical issue.

The future shows these voltages going down, currents
going up, and transient responses approaching 100 nsec,
only placing more restrictions on the designer’s goal of
using real world devices to achieve these requirements.

The devices of the past have been compensated internally
to handle a wide range of output capacitor types and remain
functional (stable). The response time of these regulators
has been sufficient to handle most or all of the applications
they are used in. There is usually a minimum ESR for the
output capacitor specified with no limitations on the
maximum. If an external power device (usually a BJT or
MOSFET) is to be used, no practical limitation was placed
on the design parameters for this device.

LDO controllers designed for fast transient response tend
to have gain–bandwidth products that are large and place
more demands on the overall design on the system to yield
fast, stable, low overshoot responses. The controller’s
output gate drive impedance, feedback input impedance,
and gain–bandwidths all play a factor in determining the
selection of external components to be used. The output
capacitor’s ESR and capacitance as well as the output

power device’s input capacitance and forward conductance
gain will determine the regulators response when working
in conjunction with the controller’s parameters.

By analyzing the overall response of the feedback loop,
there are some basic guidelines that will make the overall
response of the regulator less sensitive to the parasitics of
the devices being used. There are also certain things one
needs to look out for in the selection of components to give
the best overall response.

Mathematical modeling, circuit simulation, and
breadboard testing all work together to give a clear insight
to this design approach. Although not perfect, the basic
design guidelines will show the parameters of most interest
in the selection of all devices used for the best response to
meet a given set of power supply requirements.

1. Introduction

Figure 1 shows the basic components that make up a
linear low–dropout (LDO) regulator. There is an error amp
that measures the difference between a reference voltage
supply and a feedback voltage from the output of the
regulator. This error signal is amplified and then used to
control the input of an output driver.

The feedback divider is used to attenuate the amount of
the output voltage that is fed back to the error amplifier’s
input, thus allowing the output voltage to be set greater than
the reference voltage.

The driver’s output acts as a current source and is used
for producing the output voltage of the regulator by passing
this current through the output impedance. The output
impedance is primarily made up of a load resistance in
parallel with an output capacitor.
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Figure 1. Basic LDO Regulator Block Diagram
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The error amplifier, output driver/load, and feedback
divider each has its own transfer function (A, B, and C).
The stability and response of the regulator will depend on
all of these.

2. LDO Closed Loop Function

The overall closed loop response of an LDO regulator
determines how stable and how fast its response will be. A
simplified closed loop block diagram for an LDO is shown
in Figure 2. The closed loop response function for the
system is also shown in terms of each of the block’s transfer
functions.

H(s) �
VO
VR

� 1
C(s)

� 1 � AV �
N(s)
D(s)1 � 1

{A(s) · B(s) · C(s)}

AV � 1
C(s)

� 1 � R1
R2

(DC)

or � 1 (AC)

Figure 2. LDO Closed Loop Block Diagram
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Here is shown the general form of the overall closed loop
transfer function H(s) for the LDO regulator. Section 4
deals with the design of the feedback divider such that we
obtain the desired function C(s) as shown here.

3. Error Amplifier

The error amplifier usually has a very large open loop
gain at dc and then starts to roll off after a set frequency.
The gain at dc is greater than 60 dB to keep the error in the
output voltage of the regulator less than 0.1%. There is a

dominant low frequency roll off point (pole) for controlling
and limiting the gain at higher frequencies. The error amp
also has a secondary high frequency pole that usually stems
from the design of the part.

Figure 3 shows a basic error amplifier and its transfer
function. Over the frequency range of interest for stability
and transient analysis, the transfer function for the error
amplifier A(s) can be approximated as shown.

A(s) �
Ao

� s
�o � 1� · � s

�1
� 1�

�
�a
s · 1

� s
�1

� 1�

Ao � error amp open loop gain
�o � dominant error amp pole
�1 � secondary error amp pole

(set �1 � �a if not specified)

Figure 3. Feedback Divider and Transfer Function

Error Amplifier
VR

V2

V1A

V1 = A(s) ⋅ (VR – V2)

�a � error amp gain bandwidth
Ao · fo � gain bandwidth

Notice we introduce here a term commonly known as the
“gain–bandwidth” of the amplif ier. The device
manufacturer usually specifies the gain bandwidth directly
or graphically. Unfortunately, the second pole is generally
not specified. It is conservative (for the purpose of analysis)
to set this pole equal to the gain–bandwidth of the error
amp.

4. The Feedback Divider

The feedback divider is used for setting the output
voltage of the LDO regulator when the output is required to
be larger than the reference input voltage. At high
frequencies though, it would be preferred not to attenuate
the output signal that is delivered to the error amp input.



AND8037/D

http://onsemi.com
3

Figure 4 shows the components that make up the divider
as well as its transfer function.

V2 � 1
AV

·
(1 � sCbR1) · Vo � (sCaRT) · VR · AV

[1 � s(Ca � Cb)RT]

AV � 1 �
R1
R2

RT � Ra � Rb

Figure 4. Feedback Divider and Transfer Function
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By looking at the expression for V2 one can see it
depends on both the output voltage VO and reference input
VR. By setting the components in the divider properly, one
can achieve the desired result for C(s). The following
design guidelines yield the proper results:

AV �
Vo
VR

(DC) R1 �
AV

10�aCa

R2 �
R1

(AV � 1)
Cb � 100

�aR2

Vo � output voltage (known)
VR � reference voltage (known)
AV � DC gain (solve for)
�a � gain bandwidth (from error amp analysis)
Ca � error amp input capacitance

(use 10 pf if not specified)
R1 � first divider resistor (solve for)
R2 � second divider resistor (solve for)
Cb � divider compensation capacitor (solve for)

V2 � C(s) · Vo C(s) � 1
AV

(DC) � 1 (AC)

If the feedback divider is built into the device (i.e. a fixed
output voltage version), then the divider is typically already
optimized for these design guidelines.

5. Output Driver and Load

The final component block of the LDO regulator is the
output driver and load combination. Together they form the
final transfer function block in the system. This section of
the LDO regulator is the most complex section dealt with so
far. It also happens to be the one that has the most influence
on the overall system behavior. It is the one the designer has
the most control over, which can be both good and bad. It is
good from the standpoint that the designer has the
flexibility to make the system perform optimally with the
proper selection of components. But it can be bad for the
same reason if the approach to selecting these components
is not well understood.

The components that make up this section of the circuit
and its associated transfer function are shown in Figure 5.

B(s) �
� s
�c � 1�

�s2 1
�c · �F

· ��� 1
gm · Rs

� � s
 1
�c · �1 � 1

gm · Rs
� � �

�F
� � 1

�c � 1
Rs · Co

�F � 1
Ci · Ro

Ci � Cgs � Cgd � �
Cgd

(Cgs � Cgd)

Vo � B(s) · V1

Figure 5. Output Driver/Load and Transfer Function
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Here it can be seen that the transfer function B(s)
contains two poles and one zero. There are also two
frequency components. One is made up from the error

amplifier’s output impedance interacting with the driver’s
input capacitance. The other is the component associated
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with the output capacitor’s equivalent series resistance
(ESR) and capacitance.

To best determine the impact of these components on the
overall response of the system, we next need to determine
the overall closed loop transfer function and look at it in
detail.

6. Closed Loop Response Analysis

In section 2 we determined an expression for the overall
closed loop transfer function H(s). We now need to
combine the results for A(s), B(s), and C(s) into this
formula to produce the following for H(s):

H(s) � AV ·
N(s)
D(s)

�
N(s)
D(s)

(AV � 1, AC)

N(s) � � s
�c

� 1�

s4
�1 · �a · �c · �f

· ��� 1
gm · Rs

�� s3
�1 · �a

· 
 1
�c
�1 � 1

gm · Rs
�� �

�f
�� s3

�a · �c · �f
· ��� 1

gm · Rs
�

� s2
�1 · �a

� s2
�a

· 
 1
�c

· �1 � 1
gm · Rs

�� �

�f
�� s · � 1

�a
� 1

�c
�� 1

D(s) �

It can be seen that the system contains one zero and four
poles overall. It is also obvious that this expression is far to
complex to work from directly and some limitations need to
be placed on the factors involved to yield the type of
response desired.

A closer analysis of the pole locations places them
generally as two real (one high frequency and one low) and
the other two being complex or real (depending on the
design). By determining the conditions for having the poles
remaining in the left–hand plane (required for stability) and
being critically damped or more (required for optimum
response), the following set of design guidelines are
obtained.

�p � � 1
�1

� 1
�f
��1

1

20 · �1 � �a
(3 · �p)

� · 1
gm

� Rs �
(3 · �p)

�a
· 1

gm

Co · Rs � 1
�c

� 5 · � 1
�a

� 1
�p
�

T � 1
�p

� 1
gm · Rs · �a

�p � secondary pole for open loop (solve for)
�1 � error amp second pole (known or assumed)
�f � driver pole frequency

(if driver built in, let �p � �1)
�a � gain bandwidth (from error amp analysis)
gm � maximum driver transconductance gain

(if driver built in, then 1	gm is the output
impedance of the regulator)

Rs � ESR resistance of output capacitor (solve for)
Co � output capacitor (solve for)
T � overall loop response time (solve for)

These guidelines give the designer a straightforward
method of solving for the output driver and output capacitor
in terms of the controller being used. It also allows one to
determine what controller may be needed if a given time
response is required for the network. In general, it ties
together all of the parameters involved in the design.

If a regulator is being used where the output driver device
is built in, then one needs to follow the described procedure
given above in the selection of the parameters.

These guidelines have been used to design LDO
regulators that have been simulated and prototyped. A
design example and closed loop response has been done
where the various components have been changed to show
the validity of these design guidelines (refer to section 8
and [1]).

7. Alternate LDO Topologies

Up to now, the closed loop response design has been
geared for an N–channel MOSFET output driver topology.
If the output driver were an NPN transistor, the only change
would be to make the following substitutions.

Cgs � Cbe Cgd � Cbc

So instead of gate–to–source and gate–to–drain
capac i tances , we have base– to–emi t te r and
base–to–collector (the base–to–emitter resistance can be
ignored).

If the LDO regulator is designed for driving a P–channel
MOSFET (or PNP transistor), the closed loop changes are
only sign changes with the overall analysis remaining the
same. Figure 6, on the following page, shows this style of
topology and the resulting overall transfer function H(s)
(which is the same as the previous).
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H(s) �
Vo
VR

� 1
C(s)

� 1
1 � 1

�A(s) · B(s) · C(s)

� AV �
N(s)
D(s)

Figure 6. Closed Loop Block Diagram and Transfer Function for Alternate Topology
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The same basic design guidelines still apply for this form
of LDO regulator.

8. Design Example

The following is a design example to show the response
of an LDO based on changing various parameters. It is

shown that the design guidelines presented yield a stable
response and can also be used for optimizing the transient
behavior.

The MC33567 dual LDO controller and MTD3055
N–channel MOSFET will be used for the design example.
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Figure 7. MC33567 Dual LDO Controller

Band Gap REF

The following figure shows the LDO regulator design and the parameters for the MC33567 controller and MTD3055 NFET.

Figure 8. LDO Regulator Example Using MC33567 and MTD3055
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Figure 9 shows what happens to the closed loop response
when the ESR of the output capacitance is changed. The
computed upper and lower limits on the ESR for this design
example are also shown.

Note that making the ESR larger or smaller tends to make
the response more unstable. Notice that making the ESR

larger speeds up the closed loop response but will also
increase the magnitude of the initial transient response due
to fast changes in output current (see Figure 13).

Figure 9. Closed Loop Response for Varying ESR of Output Capacitor
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Figure 10 shows what happens to the closed loop
response when the value of the output capacitance is

changed. The limit on the value for this design example is
also shown.

Figure 10. Closed Loop Response for Varying Value of Output Capacitor
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Figure 11 shows what happens to the closed loop
response when the output driver (NFET) is changed. The
system is optimized for the MTD3055. By changing to a
higher gain FET, we create more instability. If there needs

to be interchangeability on driver devices, always design
around the higher gain one so the other devices will be
stable.
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Figure 11. Closed Loop Response for Changing Output Driver
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Figure 12 shows what happens to the closed loop
response when the gain bandwidth of the error amp is
changed. The system was optimized for the MC33567

5 MHz gain bandwidth. By changing to a higher value, we
create more instability.

Figure 12. Closed Loop Response for Changing Error Amplifier Gain Bandwidth

Designed for (Af)o = 5 MHz
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Finally, we want to take a look at the transient response
for the LDO regulator where the design guidelines have
been used. Figure 13 is what an optimized transient
response looks like in theory and Figure 14 shows various
transient responses for the design example.
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Figure 13. Typical Transient Response for
Optimized System
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Here, the value T is from section 6. If the transient
response is a requirement, one can use the equations in
Figure 13 to solve for RS and T, then use the design
guidelines in reverse to select the appropriate LDO
controller/regulator design.

Figure 14. Transient Response for Changing Error Amplifier Gain Bandwidth

MTD3055: gm = 7, Ci = 2200 pf
(Co = 500 µF, Rs = 30 mΩ)
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It can be seen that the transient response for the
optimized design responds the fastest with little or no
overshoot after the initial step. If the initial step is too large,
a smaller ESR is needed for the output capacitor. But one
needs to go through the design guidelines with this new
value to make sure stability is preserved.

9. Conclusions

The basics involved for designing a linear LDO regulator
based on stability and response has been presented to the
designer in a form that allows the selection of components
for the design. These guidelines are straightforward and do
not require an analysis of the open loop response, phase
margin, or pole/zero location.

Once a design has been produced using these guidelines,
one should run the circuit through a simulation and then

prototype it. There are other factors involved, such as
second order parasitics and circuit board layout
interference that can cause the network to behave
differently than expected. The guidelines given are
generally conservative enough to make the overall design
least susceptible to these issues.

Also, since the guidelines given are very conservative,
one may obtain a satisfactory result with component values
that lie just outside of the guidelines (although deviating far
from them will generally cause instability).
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