Impact of DBC Oxidation on (A)SPM Module Performance

Introduction

(A)SPM modules with Direct Bonded Copper (DBC) substrates aim for high thermal performance. The backside of the DBC substrate is formed by a bare copper layer which is supposed to contact external heat sink through thermal grease or any other Thermal Interface Material (TIM). The surface of the copper layer may get oxidized when it is exposed to the atmosphere during storage or the manufacturing process. The objective of this AN−9190 is to clear up the concerns on any performance degradation due to the DBC oxidation by illustrating the effect of copper oxide layer on the thermal and electrical characteristics of (A)SPM products and proving that there is no impact on the performance of the modules.

What is DBC?

As seen from Figure 1, the DBC substrate is composed of a thin ceramic layer with a sheet of copper bonded to both sides by a high−temperature oxidation process. It is commonly used in power modules because of its excellent thermal conductivity. The top copper layer can be chemically etched using printed circuit board technology to form an electrical circuit, while the bottom copper layer is usually kept plain.

Figure 1. Structure of DBC

Alumina (Al₂O₃) or Aluminum nitride (AlN) are used as ceramic material. AlN has much better thermal conductivity (> 150 W/mK) than Al₂O₃ (24–28 W/mK) but is much more expensive. The DBC substrates have excellent electrical insulation and good heat spreading characteristics.[1]

What is Copper Oxidation?

The copper oxide consists normally of Cu₂O or CuO. The oxide layer is formed very thin and non−uniformly. For example, the thickness of oxide is known to reach around 125 nm when the copper surface is exposed to air at 200°C for 1 hour.[2] Actual measurements performed with special equipments show that thickness of oxidation layers of typical oxidized samples are from 1.8 nm to 14 nm.

Figure 2. DBC Oxidation Process

Oxidation starts with the formation of Cu₂O, which is red or pink in color, when copper atoms initially react with oxygen molecules in the air. [3]

$$2\text{Cu} + \text{O}_2 \rightarrow \text{Cu}_2\text{O} \quad \text{(eq. 1)}$$

Cu₂O can be further oxidized to CuO which is black in color.

$$2\text{Cu}_2\text{O} + \text{O}_2 \rightarrow 4\text{CuO} \quad \text{(eq. 2)}$$

In the case of SPM products, a very thin Cu₂O layer can be generated if exposed to air for a long time. It is known that the storage in a high temperature and high humidity setting would accelerate Cu oxidization. It is better to keep the devices in an environment with humidity of 50 +25/−20% RH and temperature of 24 ± 5°C.

Thermal Performance

Thermal characteristics of semiconductor packages are represented as thermal resistance, R_{thjc} and R_{thjs}. The thermal resistance by conduction is expressed as following:

$$R_{th,conduction} = \frac{L}{kA} \quad \text{(eq. 3)}$$

where $R_{th,conduction}$ is thermal resistance of solid conductor in [°C/W]

www.onsemi.com
L is thickness of solid conductor in [m]
A is heat dissipation area of solid conductor in [m²]
k is thermal conductivity of solid conductor in [W/m°C]

R_{thjc} is thermal resistance from junction-to-case and related to the package structure. R_{thjs} is thermal resistance from junction-to-sink and includes the thermal resistance of the contact between package and external heat sink.

Figure 3 shows a general cross sectional view of an (A)SPM package mounted on a heat sink. Thermal grease with a thermal conductivity of 1 W/mK is commonly used in order to reduce the thermal resistance of the contact. The thickness of thermal grease is assumed to be around 50 μm in (A)SPM package.

R_{thjc} and R_{thjs} of the (A)SPM package is expressed as the sum of thermal resistances of each layer as shown in Table 1 and Table 2 respectively. These results are generated by FloTherm, thermal analysis software based on the dimensions and properties of the each material. The thermal resistance of copper oxide layer is 0.0021% of the R_{thjc}, and 0.0013% of the R_{thjs} when the thickness of copper oxide is 100 nm and thermal conductivity is 10 W/m°C. Contribution of copper oxide layer to R_{thjc} and R_{thjs} is so small that the copper oxide layer does not affect the thermal performance of (A)SPM package.

<table>
<thead>
<tr>
<th>Table 1. DETAILS OF R_{thjc}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{thjc}</td>
</tr>
<tr>
<td>R_{th_chip}</td>
</tr>
<tr>
<td>$R_{th_adhesive}$</td>
</tr>
<tr>
<td>$R_{th_Top_Cu}$</td>
</tr>
<tr>
<td>$R_{th_AL2O3\ Substrate}$</td>
</tr>
<tr>
<td>$R_{th_Bottom_Cu}$</td>
</tr>
<tr>
<td>$R_{th_OxideLayer}$</td>
</tr>
</tbody>
</table>

Table 2. DETAILS OF R_{thjs}

<table>
<thead>
<tr>
<th>R_{thjs}</th>
<th>100.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{th_chip}</td>
<td>5.80%</td>
</tr>
<tr>
<td>$R_{th_adhesive}$</td>
<td>3.65%</td>
</tr>
<tr>
<td>$R_{th_Top_Cu}$</td>
<td>1.50%</td>
</tr>
<tr>
<td>$R_{th_AL2O3\ Substrate}$</td>
<td>47.85%</td>
</tr>
<tr>
<td>$R_{th_Bottom_Cu}$</td>
<td>0.54%</td>
</tr>
<tr>
<td>$R_{th_OxideLayer}$</td>
<td>0.0013%</td>
</tr>
<tr>
<td>$R_{th_thermal\ Grease}$</td>
<td>40.67%</td>
</tr>
</tbody>
</table>

Actual measurements of thermal resistance were also performed with the FSBB30CH60 and FSBB20CH60 to prove the software analysis. Measured R_{thjc} with oxidized samples and non-oxidized samples showed similar values and the difference is smaller than measurement tolerance 5%. According to the test result and simulation outcome, it can be concluded that Oxidation of DBC does not have any impact on thermal resistance.

Isolation Voltage

DBC oxidation does not have any impact on electrical characteristics of (A)SPM products because all electrical components such as IGBT’s, diodes, IC’s, bootstrap diodes, lead-frame, and bonding wires are totally isolated from the external copper layer of the DBC.

There is no degradation of isolation voltage. It is the ceramic layer in the middle of the DBC that provides the high level of isolation. Therefore, the oxidized copper layer does not have any impact on the isolation voltage level of (A)SPM products.

Examples of Oxidized DBC

As seen from Figure 4, fresh copper layer is a golden color for SPM3 and ASPM27 series modules.

www.onsemi.com
Figure 5 shows oxidized copper layer as time passed from copper atoms reacted with oxygen molecules in the air.

Figure 6 shows an example of oxidized copper layer with picker circle printing of SPM3 and ASPM 27 series modules.

The picker circle printing is just trace of handler in mass product line. Please refer to the Figure 7.

Figure 8 is a sample for a fingerprint or glove mark when users are assembling or touching the modules directly on the production line. It can cause oxidation on the copper layer by sweat. However, there are no effects with the modules.

Figure 9 shows discolor and oxidation by water remained on DBC surface. Water remain and splash in manufacturing process by high humidity, old equipment or facilities etc.

Conclusion

The exposed DBC copper layer of the SPM package can be oxidized during storage or the manufacturing process. The oxide layer formed is very thin on the outer surface. But the impact of the oxidation on thermal resistance is negligible, and there is no degradation of isolation voltage of the package. The oxidized copper layer does not affect thermal performance, electrical characteristics and product reliability.
References

Related Resources

NFVA33065L32 – Product Folder
NFVA34065L32 – Product Folder
NFVA35065L32 – Product Folder
FSBB30CH60C – Product Folder
FSBB30CH60D – Product Folder
FSBB10CH120D – Product Folder
FSBB10CH120DF – Product Folder
FNA23512A – Product Folder
FNA22512A – Product Folder
FNA21012A – Product Folder
AN−9086 — SPM 3 Package Mounting Guidance
RD−404 — Reference Design of FSBB10CH120D
RD−354 — Reference Design of 1200V Motion SPM 2 Series
AN−9075 – Users Guide for 1200V SPM 2 Series
AN−9076 – Mounting Guide for New SPM 2 Package
AN−9079 – Thermal Performance of 1200V Motion SPM 2 Series by Mounting Torque

SPM is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

Order Literature: http://www.onsemi.com/orderlit

ON Semiconductor Website: www.onsemi.com

N. American Technical Support: 800−282−9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

For additional information, please contact your local Sales Representative

AN−9190/D