

8-Bit Shift Register with Output Latches

74VHC595

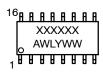
General Description

The VHC595 is an advanced high-speed CMOS Shift Register fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has eight 3-STATE outputs. Separate clocks are provided for both the shift register and the storage register. The shift register has a direct-overriding clear, serial input, and serial output (standard) pins for cascading. Both the shift register and storage register use positive-edge triggered clocks. If both clocks are connected together, the shift register state will always be one clock pulse ahead of the storage register.

An input protection circuit insures that 0 V to 5.5 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

Features


- High Speed: $t_{PD} = 5.4 \text{ ns}$ (Typ.) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 4 \mu A \text{ (Max.)}$ at $T_A = 25 \text{ °C}$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Power Down Protection is Provided on All Inputs
- Low Noise: V_{OLP} = 0.9 V (Typ.)
- Pin and function compatible with 74HC595
- This is a Pb-Free Device

CASE 751BG

MARKING DIAGRAMS

XXX = Specific Device Code A = Assembly Location

WL, L = Wafer Lot Y = Year WW, W = Work Week G, ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

1

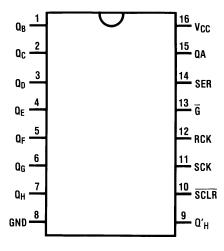


Figure 1. Connection Diagram

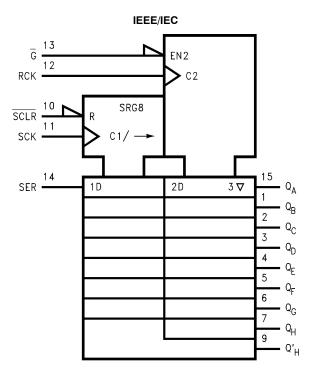
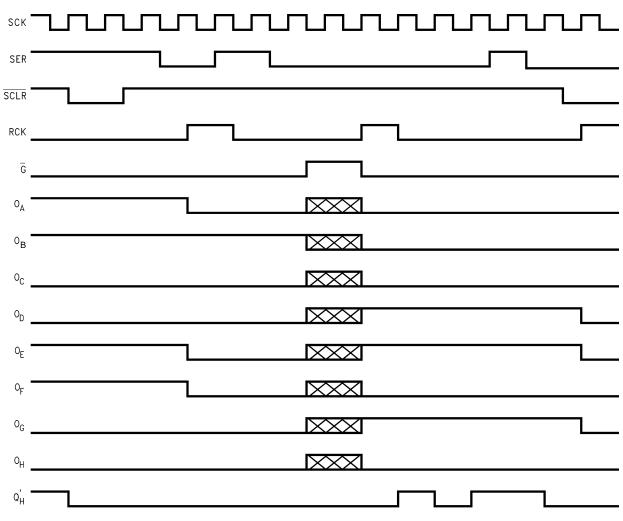


Figure 2. Logic Symbol


PIN DESCRIPTIONS

Pin Names	Description				
SER	Serial Data Input				
SCK	Shift Register Clock Input (Active rising edge)				
RCK	Storage Register Clock Input (Active rising edge)				
SCLR	Reset Input				
G	3-STATE Output Enable Input (Active LOW)				
Q _A – Q _H	Parallel Data Outputs				
Q' _H	Serial Data Output				

TRUTH TABLE

	Inputs				
SER	RCK	SCK	SCLR	G	Function
Х	Х	Х	Х	Н	Q _A thru Q _H 3-STATE
Х	Х	Х	Х	L	Q _A thru Q _H outputs enabled
X	Х	Х	L	L	Shift Register cleared: Q' _H = 0
L	Х	↑	Н	L	Shift Register clocked: $Q_N = Q_{n-1}$, $Q_0 = SER = L$
Н	Х	↑	Н	L	Shift Register clocked: $Q_N = Q_{n-1}$, $Q_0 = SER = H$
Х	1	Х	Н	L	Contents of Shift Register transferred to output latches

Timing Diagram

NOTE: Implies that the output is in 3-STATE mode.

Figure 3. Timing Diagram

Logic Diagram (Positive Logic)

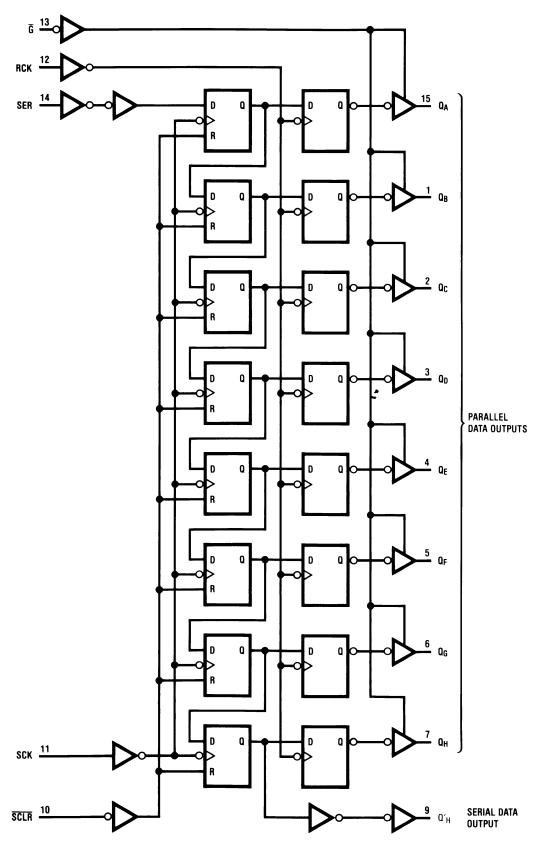


Figure 4. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
V _{IN}	DC Input Voltage		-0.5 to +6.5	V
V _{OUT}	DC Output Voltage		-0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Current, per Pin		±20	mA
I _{OUT}	DC Output Current, Per Pin		±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins		±75	mA
I _{IK}	Input Clamp Current		-20	mA
lok	Output Clamp Current	±20	mA	
T _{STG}	Storage Temperature Range	-65 to +150	°C	
TL	Lead Temperature, 1 mm from Case for 10 secs	260	°C	
TJ	Junction Temperature Under Bias		+150	°C
$\theta_{\sf JA}$	Thermal Resistance (Note 2)	SOIC-16	126	°C/W
		TSSOP-16	159	
P_{D}	Power Dissipation in Still Air at 25°C	SOIC-16	995	mW
		TSSOP-16	787	
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	UL 94 V-0 @ 0.139 in	-	
V _{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model	2000	V
		Charged Device Model	N/A	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Applicable to devices with outputs that may be tri-stated.
- Measured with minimum pad spacing on an FR4 board, using 76 mm-by-114 mm, 2-ounce copper trace no air flow per JESD51-7.
 HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	DC Supply Voltage	2.0	5.5	V	
V _{IN}	DC Input Voltage (Note 4)	0	5.5	V	
V _{OUT}	DC Output Voltage (Note 4)	0	V _{CC}	V	
T _A	Operating Temperature	-40	+85	°C	
t _r , t _f	Input Rise or Fall Rate	V _{CC} = 3.0 V to 3.6 V	0	100	ns/V
		V _{CC} = 4.5 V to 5.5 V	0	20	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

4. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS

					Т	T _A = 25°C			T _A = -40°C to +85°C	
Symbol	Parameter	V _{CC} (V)	Cond	Conditions		Тур	Max	Min	Max	Unit
V _{IH}	HIGH Level Input	2.0			1.5			1.5		V
	Voltage	3.0 – 5.5			$0.7 \times V_{CC}$			$0.7 \times V_{CC}$		
V _{IL}	LOW Level Input	2.0					0.50		0.50	V
	Voltage	3.0 – 5.5					$0.3 \times V_{CC}$		$0.3 \times V_{CC}$	
V _{OH}	HIGH Level	2.0	$V_{IN} = V_{IH}$	$I_{OH} = -50 \mu A$	1.9	2.0		1.9		V
	Output Voltage	3.0	or V _{IL}		2.9	3.0		2.9		
		4.5			4.4	4.5		4.4		
		3.0		$I_{OH} = -4 \text{ mA}$	2.58			2.48		
		4.5		I _{OH} = -8 mA	3.94			3.80		
V _{OL}	LOW Level	2.0	$V_{IN} = V_{IH}$	I _{OL} = 50 μA		0.0	0.1		0.1	V
	Output Voltage	3.0	or V _{IL}			0.0	0.1		0.1	
		4.5				0.0	0.1		0.1	
		3.0		I _{OL} = 4 mA			0.36		0.44	
		4.5		I _{OL} = 8 mA			0.36		0.44	
I _{OZ}	3-STATE Output Off-State Current	5.5	$V_{IN} = V_{CC}$ or GND, $V_{OUT} = V_{CC}$ or GND, $V_{IN}G = V_{IH}$ or V_{IL}				±0.25		±2.5	μΑ
I _{IN}	Input Leakage Current	0 – 5.5	V _{IN} = 5.5 V or GND				±0.1		±1.0	μΑ
Icc	Quiescent Supply Current	5.5	V _{IN} = V _{CC} or G	iND			4.0		40.0	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOISE CHARACTERISTICS

			T _A = 25°C		25°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур	Limits	Unit
V _{OLP} (Note 5)	Quiet Output Maximum Dynamic V _{OL}	5.0	C _L = 50 pF	0.9	1.2	٧
V _{OLV} (Note 5)	Quiet Output Minimum Dynamic V _{OL}	5.0	C _L = 50 pF	-0.9	-1.2	٧
V _{IHD} (Note 5)	Minimum HIGH Level Dynamic Input Voltage	5.0	C _L = 50 pF		3.5	٧
V _{ILD} (Note 5)	Maximum LOW Level Dynamic Input Voltage	5.0	C _L = 50 pF		1.5	V

^{5.} Parameter guaranteed by design.

AC ELECTRICAL CHARACTERISTICS

					-	Γ _A = +25°(;	T _A = -	-40°C 85°C	
Symbol	Parameter	V _{CC} (V)	Cond	itions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay Time,	3.3 ± 0.3		C _L = 15 pF		7.7	11.9	1.0	13.5	ns
	RCK to Q _A –Q _H			C _L = 50 pF		10.2	15.4	1.0	17.0	
		5.0 ± 0.5		C _L = 15 pF		5.4	7.4	1.0	8.5	ns
				C _L = 50 pF		6.9	9.4	1.0	10.5	
t _{PLH} , t _{PHL}	Propagation Delay Time,	3.3 ± 0.3		C _L = 15 pF		8.8	13.0	1.0	15.0	ns
	SCK-Q'H			C _L = 50 pF		11.3	16.5	1.0	18.5	
		5.0 ± 0.5		C _L = 15 pF		6.2	8.2	1.0	9.4	ns
				C _L = 50 pF		7.7	10.2	1.0	11.4	
t _{PHL}	Propagation Delay Time,	3.3 ± 0.3		C _L = 15 pF		8.4	12.8	1.0	13.7	ns
	SCLR-Q'H			C _L = 50 pF		10.9	16.3	1.0	17.2	
		5.0 ± 0.5		C _L = 15 pF		5.9	8.0	1.0	9.1	ns
				C _L = 50 pF		7.4	10.0	1.0	11.1	
t _{PZL} , t _{PZH}	Output Enable Time,	3.3 ± 0.3	$R_L = 1 \text{ k}\Omega$	C _L = 15 pF		7.5	11.5	1.0	13.5	ns
	G To Q _A −Q _H			C _L = 50 pF		9.0	15.0	1.0	17.0	
		5.0 ± 0.5		C _L = 15 pF		4.8	8.6	1.0	10.0	ns
				C _L = 50 pF		8.3	10.6	1.0	12.0	
t _{PLZ} , t _{PHZ}	Output Enable Time,	3.3 ± 0.3	$R_L = 1 \text{ k}\Omega$	C _L = 50 pF		12.1	15.7	1.0	16.2	ns
	G to Q _A −Q _H	5.0 ± 0.5		C _L = 50 pF		7.6	10.3	1.0	11.0	
f _{MAX}	Maximum Clock	3.3 ± 0.3		C _L = 15 pF	80	150		70		MHz
	Frequency			C _L = 50 pF	55	130		50		
		5.0 ± 0.5		C _L = 15 pF	135	185		115		MHz
				C _L = 50 pF	95	155		85		
t _{OSLH} ,	Output to Output Skew	3.3 ± 0.3	(Note 6)	C _L = 50 pF			1.5		1.5	ns
toshl		5.0 ± 0.5		C _L = 50 pF			1.0		1.0	
C _{IN}	Input Capacitance		V _{CC} = Open			5.0	10		10	pF
C _{OUT}	Output Capacitance		V _{CC} = 5.0 V			6.0				pF
C _{PD}	Power Dissipation Capacitance		(Note 7)			87				pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Parameter guaranteed by design. t_{OSLH} = | t_{PLH} max - t_{PLH} min|; t_{OSHL} = | t_{PHL} max - t_{PHL} min|.

7. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:

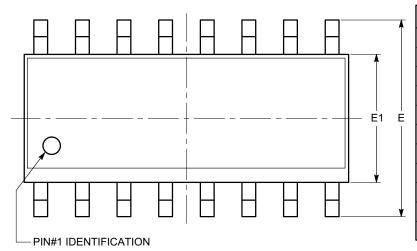
I_{CC} (Opr.) = C_{PD} × V_{CC} × f_{IN} + I_{CC}

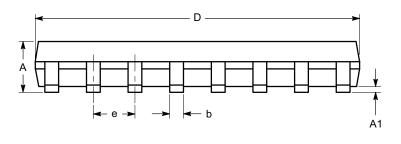
AC OPERATING REQUIREMENTS

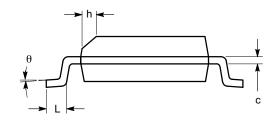
			T _A :	= 25°C	T _A = -40°C to +85°C	
Symbol	Parameter	V _{CC} (V)	Тур	Guarante	ed Minimum	Unit
t _S	Minimum Setup Time (SER–SCK)	3.3 ± 0.3		3.5	3.5	ns
		5.0 ± 0.5		3.0	3.0	
t _S	Minimum Setup Time (SCK-RCK)	3.3 ± 0.3		8.0	8.5	ns
		5.0 ± 0.5		5.0	5.0	
t _S	Minimum Setup Time (SCLR-RCK)	3.3 ± 0.3		8.0	9.0	ns
		5.0 ± 0.5		5.0	5.0	
t _H	Minimum Hold Time (SER-SCK)	3.3 ± 0.3		1.5	1.5	ns
		5.0 ± 0.5		2.0	2.0	
t _H	Minimum Hold Time (SCK-RCK)	3.3 ± 0.3		0.0	0.0	ns
		5.0 ± 0.5		0.0	0.0	
t _H	Minimum Hold Time (SCLR-RCK)	3.3 ± 0.3		0.0	0.0	ns
		5.0 ± 0.5		0.0	0.0	
t _{W(L)}	Minimum Pulse Width (SCLR)	3.3 ± 0.3		5.0	5.0	ns
		5.0 ± 0.5		5.0	5.0	
$t_{W(L)}, t_{W(H)}$	Minimum Pulse Width (SCK)	3.3 ± 0.3		5.0	5.0	ns
		5.0 ± 0.5		5.0	5.0	
$t_{W(L)}, t_{W(H)}$	Minimum Pulse Width (RCK)	3.3 ± 0.3		5.0	5.0	ns
		5.0 ± 0.5		5.0	5.0	
t _{rem}	Minimum Removal Time (SCLR-SCK)	3.3 ± 0.3		3.0	3.0	ns
		5.0 ± 0.5		2.5	2.5	

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
74VHC595MX	VHC595G	SOIC-16	2500 Units / Tape & Reel
74VHC595MTCX	VHC 595	TSSOP-16	2500 Units / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D.</u>

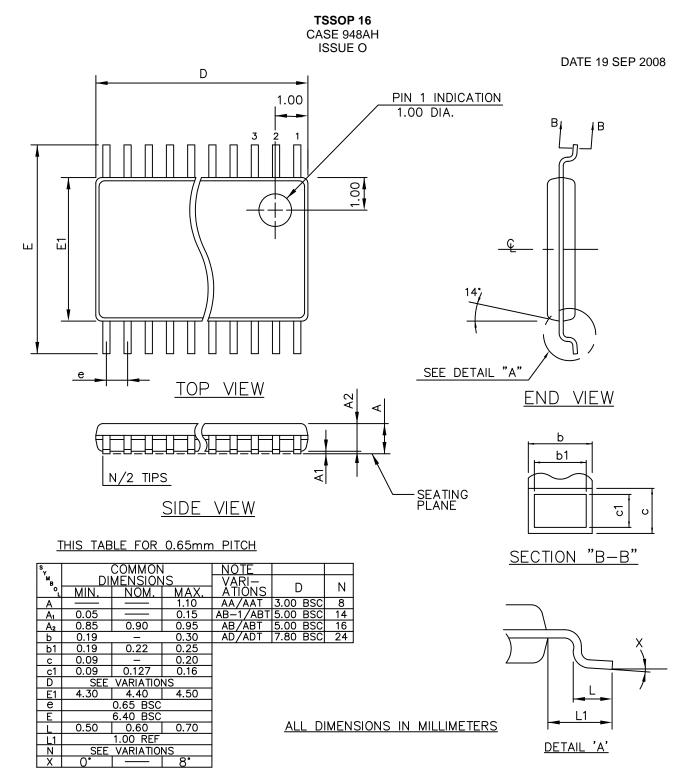

SOIC-16, 150 mils CASE 751BG ISSUE O


DATE 19 DEC 2008

SYMBOL	MIN	NOM	MAX
Α	1.35		1.75
A1	0.10		0.25
b	0.33		0.51
С	0.19		0.25
D	9.80	9.90	10.00
Е	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27 BSC	
h	0.25		0.50
L	0.40		1.27
θ	0°		8°

TOP VIEW

SIDE VIEW END VIEW


Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MS-012.

DOCUMENT NUMBER:	98AON34275E	E Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-16, 150 mils		PAGE 1 OF 1			

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15mm ON D PER SIDE

DOCUMENT NUMBER:	98AON34923E	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLET	
DESCRIPTION:	TSSOP 16		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales