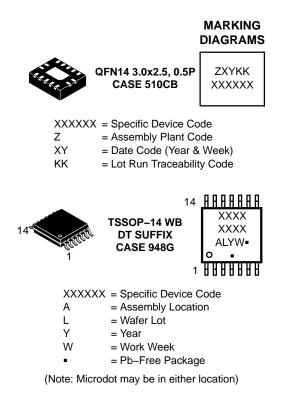
Low Voltage Hex Inverter with 5 V Tolerant Schmitt Trigger Inputs

74LCX14

General Description

The LCX14 contains six inverter gates each with a Schmitt trigger input. They are capable of transforming slowly changing input signals into sharply defined, jitter–free output signals. In addition, they have a greater noise margin than conventional inverters.


The LCX14 has hysteresis between the positive–going and negative–going input thresholds (typically 1.0 V) which is determined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations.

The inputs tolerate voltages up to 7 V allowing the interface of 5 V, 3 V and 2.5 V systems.

The 74LCX14 is fabricated with advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5 V Tolerant Inputs
- 1.65 V–5.5 V V_{CC} Specifications Provided
- 6.5ns t_{PD} Max. ($V_{CC} = 3.3$ V), 10 μ A I_{CC} Max.
- Power Down High Impedance Inputs and Outputs
- ± 24 mA Output Drive (V_{CC} = 3.0 V)
- Implements Proprietary Noise/EMI Reduction Circuitry
- Latch-up Performance Exceeds JEDEC 78 Conditions
- ESD Performance:
 - Human Body Model > 2000 V
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

74LCX14

Connection Diagrams

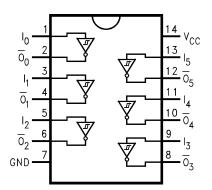


Figure 1. Pin Assignment for TSSOP

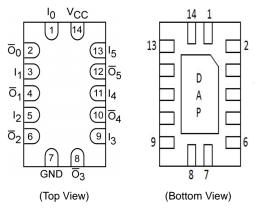


Figure 2. Pin Assignment for DQFN

PIN DESCRIPTION

Pin Names	Description
In	Inputs
Ōn	Outputs
DAP	No Connect

1. DAP (Die Attach Pad)

Logic Symbol

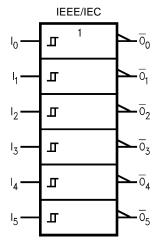


Figure 3. Logic Symbol

TRUTH TABLE

Input	Output
A	ō
L	Н
Н	L

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
VI	DC Input Voltage (Note 2)		-0.5 to +6.5	V
Vo	DC Output Voltage (Note 2)	Active–Mode (High or Low State)	–0.5 to V _{CC} + 0.5	V
		Tri-State Mode	-0.5 to +6.5	
		Power–Down Mode (V _{CC} = 0 V)	-0.5 to +6.5	
۱ _{IK}	DC Input Diode Current V _I < GND	•	-50	mA
I _{ОК}	DC Output Diode Current V _O < GND	-50	mA	
Ι _Ο	DC Output Source/Sink Current	±50	mA	
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or G	±100	mA	
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds		260	°C
TJ	Junction Temperature under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 2)	QFN14	130	°C/W
		TSSOP-14	150	
PD	Power Dissipation in Still Air at 125°C	QFN14	962	mW
		TSSOP-14	833	
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage (Note 4)	Human Body Model	2000	V
		Charged Device Model	N/A	1

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 2. I_O absolute maximum rating must be observed.

 Measured with minimum pad spacing on an FR4 board, using 76 mm-by-114 mm, 2-ounce copper trace no air flow per JESD51-7.
HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
V _{CC}	Supply Voltage	Operating	1.65	2.5, 3.3	5.5	V
		Data Retention Only	1.5	2.5, 3.3	5.5	
VI	Digital Input Voltage		0	-	5.5	V
Vo	Output Voltage	Active Mode (High or Low State)	0	-	V _{CC}	V
		Tri–State Mode	0	-	5.5	
		Power Down Mode (V _{CC} = 0 V)	0	-	5.5	
T _A	Operating Free–Air Temperature		-40	-	+125	°C
t _r , t _f	Input Rise or Fall Rate		0	-	No Limit	nS/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

5. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

74LCX14

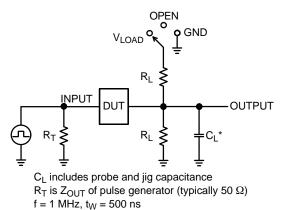
DC ELECTRICAL CHARACTERISTICS

				T _A = -40°C	c to +85°C	$T_A = -40^{\circ}C$	to +125°C	
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Min	Max	Unit
V _{T+}	Positive-Input Threshold		1.65	-	1.4	-	1.4	V
	Voltage		2.5	0.9	1.7	0.9	1.7	
			3.0	1.2	2.2	1.2	2.2	
			4.5	_	3.1	_	3.1	
			5.5	_	3.6	_	3.6	
V _{T-}	Negative-Input Threshold		1.65	0.2	_	0.2	_	V
1-	Voltage		2.5	0.4	1.1	0.4	1.1	
			3.0	0.6	1.5	0.6	1.5	
			4.5	1	-	1	-	
			5.5	1.2	-	1.2	-	
V _H	Hysteresis Voltage		1.65	0.1	0.9	0.1	0.9	V
			2.5	0.3	1.0	0.3	1.0	
			3.0	0.4	1.2	0.4	1.2	
			4.5	0.6	1.5	0.6	1.5	
		5.5	0.7	1.7	0.7	1.7		
V _{OH}	High–Level Output Voltage	$V_I = V_{IH} \text{ or } V_{IL}$						V
		I _{OH} = −100 μA	1.65 to 5.5	$V_{CC} - 0.1$	-	V _{CC} – 0.1	-	
		$I_{OH} = -4 \text{ mA}$	1.65	1.29	-	1.29	-	
		I _{OH} = -8 mA	2.3	1.8	-	1.8	-	
		I _{OH} = -12 mA	2.7	2.2	-	2.2	-	
		I _{OH} = -16 mA	3.0	2.4	-	2.4	-	
		I _{OH} = -24 mA	3.0	2.2	-	2.2	-	
		I _{OH} = -32 mA	4.5	3.7	-	3.7	-	
V _{OL}	Low–Level Output Voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$						V
		l _{OL} = 100 μA	1.65 to 5.5	-	0.1	-	0.1	
		$I_{OL} = 4 \text{ mA}$	1.65	-	0.24	-	0.24	
		I _{OL} = 8 mA	2.3	-	0.3	-	0.3	
		I _{OL} = 12 mA	2.7	_	0.4	-	0.4	
		I _{OL} = 16 mA	3.0	-	0.4	-	0.4	
		I _{OL} = 24 mA	3.0	_	0.55	-	0.55	
		I _{OL} = 32 mA	4.5	-	0.6	-	0.6	
II.	Input Leakage Current	V _I = 0 to 5.5 V	3.6	-	±5.0	-	±5.0	μA
I _{OFF}	Power Off Leakage Current	$V_{I} = 5.5 V \text{ or}$ $V_{O} = 5.5 V$	0	-	10	-	10	μA
I _{CC}	Quiescent Supply Current	$V_{I} = 5.5 \text{ V or GND}$	3.6	-	10	-	10	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6 V$	2.3 to 3.6	-	500	-	500	μA

AC ELECTRICAL CHARACTERISTICS

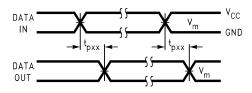
				T _A = -40°	C to +85°C	$T_A = -40^{\circ}C$	to +125°C													
Symbol	Parameter	Test Condition	V _{CC} (V)	Min	Max	Min	Max	Unit												
t _{PLH} , t _{PHL}	H, t _{PHL} Propagation Delay, Input to Output and 4		1.65 to 1.95	-	15.7	-	15.7	ns												
		and 4	2.3 to 2.7	1.5	7.8	1.5	7.8													
			2.7	1.5	7.5	1.5	7.5													
		3.0 to	3.0 to 3.6	1.5	6.5	1.5	6.5													
			4.5 to 5.5	-	5.6	-	5.6													
t _{OSHL} ,	Output to Output Skew		1.65 to 1.95	-	-	-	-	ns												
toslh	IOSLH		2.3 to 2.7	-	-	-	-													
				l											2.7	-	-	-	-	
			3.0 to 3.6	_	1.0	-	1.0													
			4.5 to 5.5	-	-	-	_													

6. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

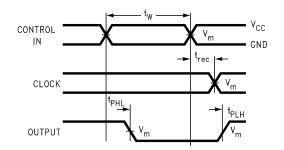

DYNAMIC SWITCHING CHARACTERISTICS

				T _A = +25°C	
Symbol	Parameter	Condition	V _{CC} (V)	Тур	Unit
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V	3.3	0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	2.5	0.6	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V	3.3	-0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	2.5	-0.6	

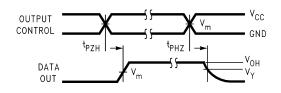
CAPACITANCE

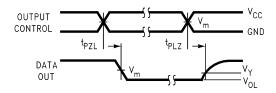

Symbol	Parameter	Condition	Тур	Unit
C _{IN}	Input Capacitance	V_{CC} = Open, V_{I} = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC},f = 10 MHz	25	pF

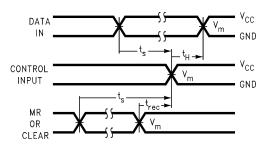
AC Loading and Waveforms (Generic for LCX Family)

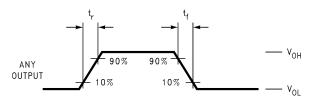


Test	Switch Position
t _{PLH} / t _{PHL}	Open
t _{PLZ} / t _{PZL}	V _{LOAD}
t _{PHZ} / t _{PZH}	GND

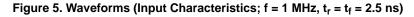

Figure 4. Test Circuit


Waveform for Inverting and Non-Inverting Functions

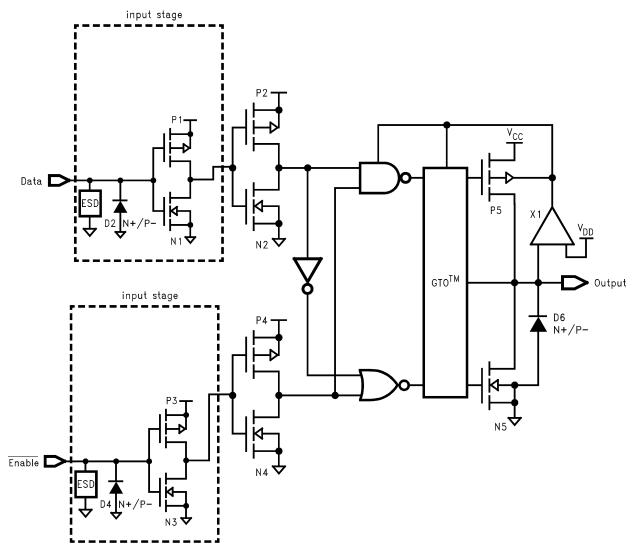

Propagation Delay. Pulse Width and $t_{\mbox{rec}}$ Waveforms


3-STATE Output Low Enable and Disable Times for Logic

3-STATE Output High Enable and Disable Times for Logic



Setup Time, Hold Time and Recovery Time for Logic



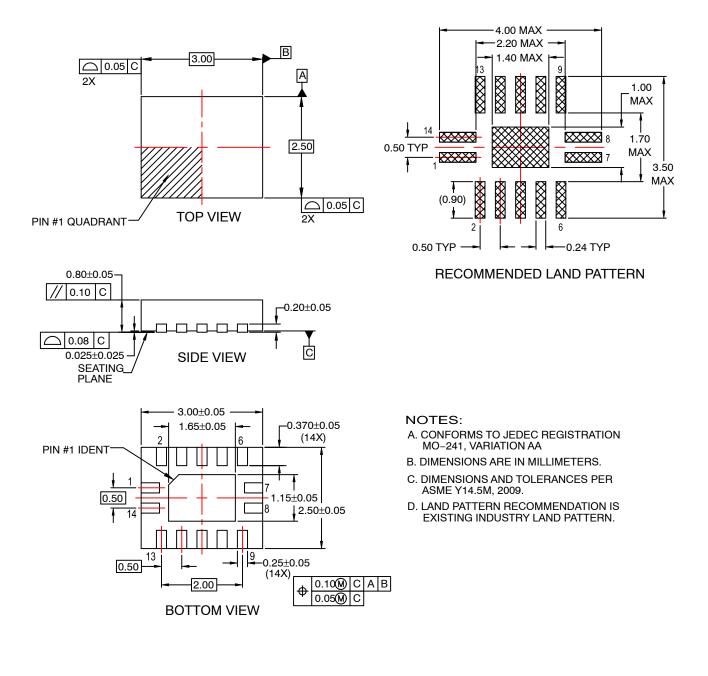
t_{rise} and t_{fall}

V _{CC} , V	R_{L}, Ω	C _L , pF	V _{LOAD}	V _m , V	V _Y , V
1.65 to 1.95	500	30	2 x V _{CC}	V _{CC} / 2	0.15
2.3 to 2.7	500	30	2 x V _{CC}	V _{CC} / 2	0.15
2.7	500	50	6 V	1.5	0.3
3.0 to 3.6	500	50	6 V	1.5	0.3
4.5 to 5.5	500	50	2 x V _{CC}	V _{CC} / 2	0.3

Schematic Diagram (Generic for LCX Family)

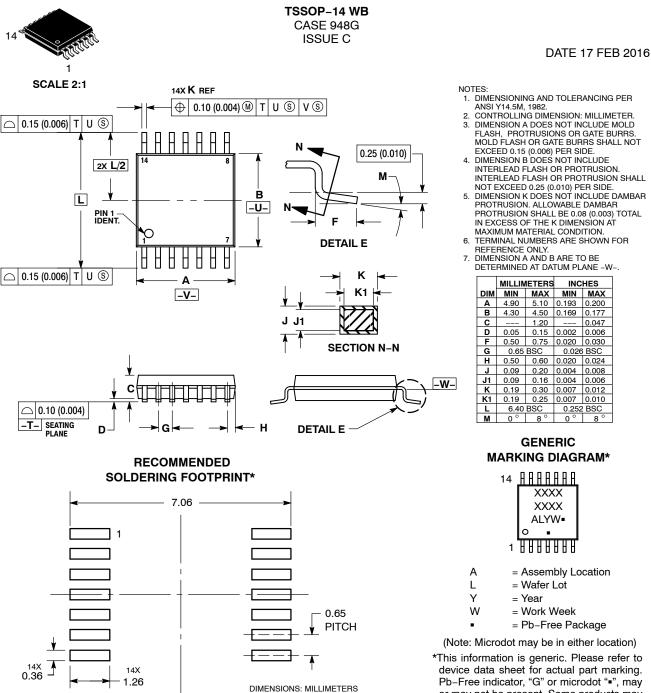
ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
74LCX14MTCX	LCX 14	TSSOP-14 (Pb-Free, Halide Free)	2500 Units / Tape & Reel
74LCX14BQX	LCX14	QFN14 (Pb–Free, Halide Free)	3000 Units / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

QFN14 3.0x2.5, 0.5P CASE 510CB ISSUE O


DATE 31 AUG 2016

DOCUMENT NUMBER:	98AON13643G	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	QFN14 3.0X2.5, 0.5P		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

semi

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1
onsemi and ONSEM) are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves			

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>