FDC2612 # N-Channel PowerTrench® MOSFET 200V 1.1A, 725mΩ ### **Product Overview** For complete documentation, see the data sheet. This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low RDS(ON) and fast switching speed. #### **Features** - 1.1 A, 200V - RDS(on) = $725 \text{ m}\Omega$ @ VGS = 10 V - High performance trench technology for extremely low RDS(ON) - · High power and current handling capability - · Fast switching speed - Low gate charge (8nC typical) #### **Applications** • This product is general usage and suitable for many different applications. | Part Electrical Specifications | | | | | | | | | | | | | | | | | | |--------------------------------|----------------------|----------------|------------|-----------------------------|---------------------------|--|-------------------------------|------------------------------|------------------------------|------------------------------|---|--|--|--|--|---------------------------------|-----------------------------| | Product | Pricing
(\$/Unit) | Complian
ce | Stat
us | Cha
nnel
Pola
rity | Con
figu
ratio
n | V _(BR)
DSS
Min
(V) | V _{GS}
Max
(V) | V _{GS(t} h) Max (V) | I _D
Max
(A) | P _D
Max
(W) | $\begin{array}{c} R_{\text{DS}(} \\ \text{on)} \\ \text{Max} \\ \text{@} \\ \text{V}_{\text{GS}} \\ \text{=} \\ 2.5 \\ \text{V} \\ \text{(m}\Omega \\ \text{)} \end{array}$ | $\begin{array}{c} R_{DS(} \\ \text{on)} \\ Max \\ @ \\ V_{GS} \\ = \\ 4.5 \\ V \\ (m\Omega \\) \end{array}$ | $R_{DS}($ Max $@$ V_{GS} $= 10$ V $(m\Omega$ | Q _g
Typ
@
V _{GS}
=
4.5
V
(nC) | Q _g
Typ
@
V _{GS}
= 10
V
(nC) | C _{iss}
Typ
(pF) | Pac
kag
e
Typ
e | | FDC2612 | 0.3299 | РЬ Н | Acti
ve | N-
Cha
nnel | Sing
le | 200 | ±20 | 4.5 | 1.1 | 1.6 | - | - | 725 | - | 8 | 234 | TSO
T-
23-
6 |