SG3525A

Pulse Width Modulator Control Circuit

The SG3525A pulse width modulator control circuit offers improved performance and lower external parts count when implemented for controlling all types of switching power supplies. The on-chip +5.1 V reference is trimmed to ±1% and the error amplifier has an input common-mode voltage range that includes the reference voltage, thus eliminating the need for external divider resistors. A sync input to the oscillator enables multiple units to be slaved or a single unit to be synchronized to an external system clock. A wide range of deadtime can be programmed by a single resistor connected between the CT and Discharge pins. This device also features built-in soft-start circuitry, requiring only an external timing capacitor. A shutdown pin controls both the soft-start circuitry and the output stages, providing instantaneous turn off through the PWM latch with pulsed shutdown, as well as soft-start recycle with longer shutdown commands. The under voltage lockout inhibits the outputs and the changing of the soft-start capacitor when VCC is below nominal. The output stages are totem-pole design capable of sinking and sourcing in excess of 200 mA. The output stage of the SG3525A features NOR logic resulting in a low output for an off-state.

Features

- 8.0 V to 35 V Operation
- 5.1 V ± 1.0% Trimmed Reference
- 100 Hz to 400 kHz Oscillator Range
- Separate Oscillator Sync Pin
- Adjustable Deadtime Control
- Input Undervoltage Lockout
- Latching PWM to Prevent Multiple Pulses
- Pulse~by~Pulse Shutdown
- Dual Source/Sink Outputs: ± 400 mA Peak
- Pb~Free Packages are Available*

*For additional information on our Pb~Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MARKING DIAGRAMS

PDIP−16 N SUFFIX CASE 648

SOIC−16L DW SUFFIX CASE 751G

PIN CONNECTIONS

INV. INPUT 16 VREF
NONINV. INPUT 15 VCC
SYNC 14 OUTPUT B
OSC. OUTPUT 13 VC
CT 12 GROUND
RT 11 OUTPUT A
DISCHARGE 10 SHUTDOWN
SOFT-START 9 COMPENSATION

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.
Figure 1. Representative Block Diagram

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG3525AN</td>
<td>PDIP–16</td>
<td>25 Units / Rail</td>
</tr>
<tr>
<td>SG3525ANG</td>
<td>PDIP–16 (Pb–Free)</td>
<td>25 Units / Rail</td>
</tr>
<tr>
<td>SG3525ADW</td>
<td>SOIC–16L</td>
<td>47 Units / Rail</td>
</tr>
<tr>
<td>SG3525ADWG</td>
<td>SOIC–16L (Pb–Free)</td>
<td>47 Units / Rail</td>
</tr>
<tr>
<td>SG3525ADWR2</td>
<td>SOIC–16L</td>
<td>1000 Tape & Reel</td>
</tr>
<tr>
<td>SG3525ADWR2G</td>
<td>SOIC–16L (Pb–Free)</td>
<td>1000 Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_CC</td>
<td>+40</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Supply Voltage</td>
<td>V_C</td>
<td>+40</td>
<td>Vdc</td>
</tr>
<tr>
<td>Logic Inputs</td>
<td>-0.3 to +5.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Analog Inputs</td>
<td>-0.3 to V_CC</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Current, Source or Sink</td>
<td>I_O</td>
<td>±500</td>
<td>mA</td>
</tr>
<tr>
<td>Reference Output Current</td>
<td>I_ref</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Oscillator Charging Current</td>
<td></td>
<td>5.0</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_D</td>
<td>1000</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, Junction-to-Air</td>
<td>R_JA</td>
<td>100</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance, Junction-to-Case</td>
<td>R_JC</td>
<td>60</td>
<td>°C/W</td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>T_J</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_stg</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 seconds)</td>
<td>T_Solder</td>
<td>+300</td>
<td>°C</td>
</tr>
</tbody>
</table>

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Derate at 10 mW/°C for ambient temperatures above +50°C.
2. Derate at 16 mW/°C for case temperatures above +25°C.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_CC</td>
<td>8.0</td>
<td>35</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Supply Voltage</td>
<td>V_C</td>
<td>4.5</td>
<td>35</td>
<td>Vdc</td>
</tr>
<tr>
<td>Output Sink/Source Current (Steady State)</td>
<td>I_O</td>
<td>0</td>
<td>±100</td>
<td>mA</td>
</tr>
<tr>
<td>(Peak)</td>
<td></td>
<td>0</td>
<td>±400</td>
<td></td>
</tr>
<tr>
<td>Reference Load Current</td>
<td>I_ref</td>
<td>0</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Oscillator Frequency Range</td>
<td>f_osc</td>
<td>0.1</td>
<td>400</td>
<td>kHz</td>
</tr>
<tr>
<td>Oscillator Timing Resistor</td>
<td>R_T</td>
<td>2.0</td>
<td>150</td>
<td>kΩ</td>
</tr>
<tr>
<td>Oscillator Timing Capacitor</td>
<td>C_T</td>
<td>0.001</td>
<td>0.2</td>
<td>μF</td>
</tr>
<tr>
<td>Deadtime Resistor Range</td>
<td>R_D</td>
<td>0</td>
<td>500</td>
<td>Ω</td>
</tr>
<tr>
<td>Operating Ambient Temperature Range</td>
<td>T_A</td>
<td>0</td>
<td>+70</td>
<td>°C</td>
</tr>
</tbody>
</table>

APPLICATION INFORMATION

Shutdown Options (See Block Diagram, page 2)

Since both the compensation and soft–start terminals (Pins 9 and 8) have current source pull–ups, either can readily accept a pull–down signal which only has to sink a maximum of 100 µA to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.

An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available shutdown options. Activating this circuit by applying a positive signal on Pin 10 performs two functions: the PWM latch is immediately set providing the fastest turn–off signal to the outputs; and a 150 µA current sink begins to discharge the external soft–start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft–start capacitor, thus, allowing, for example, a convenient implementation of pulse–by–pulse current limiting. Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turn–on upon release.

Pin 10 should not be left floating as noise pickup could conceivably interrupt normal operation.
ELECTRICAL CHARACTERISTICS
(V_{CC} = +20 Vdc, T_A = T_{low} to T_{high} [Note 3], unless otherwise noted.)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCE SECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Output Voltage (T<sub>J</sub> = +25°C)</td>
<td>V<sub>ref</sub></td>
<td>5.00</td>
<td>5.10</td>
<td>5.20</td>
<td>Vdc</td>
</tr>
<tr>
<td>Line Regulation (+8.0 V ≤ V<sub>CC</sub> ≤ +35 V)</td>
<td>Reg<sub>line</sub></td>
<td>–</td>
<td>10</td>
<td>20</td>
<td>mV</td>
</tr>
<tr>
<td>Load Regulation (0 mA ≤ I<sub>L</sub> ≤ 20 mA)</td>
<td>Reg<sub>load</sub></td>
<td>–</td>
<td>20</td>
<td>50</td>
<td>mV</td>
</tr>
<tr>
<td>Temperature Stability</td>
<td>ΔV<sub>ref</sub>/ΔT</td>
<td>–</td>
<td>20</td>
<td>–</td>
<td>mV</td>
</tr>
<tr>
<td>Total Output Variation Includes Line and Load Regulation over Temperature</td>
<td>ΔV<sub>ref</sub></td>
<td>4.95</td>
<td>–</td>
<td>5.25</td>
<td>Vdc</td>
</tr>
<tr>
<td>Short Circuit Current (V<sub>ref</sub> = 0 V, T<sub>J</sub> = +25°C)</td>
<td>I<sub>SC</sub></td>
<td>–</td>
<td>80</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Output Noise Voltage (10 Hz ≤ f ≤ 10 kHz, T<sub>J</sub> = +25°C)</td>
<td>V<sub>n</sub></td>
<td>–</td>
<td>40</td>
<td>200</td>
<td>μV<sub>rms</sub></td>
</tr>
<tr>
<td>Long Term Stability (T<sub>J</sub> = +125°C) (Note 4)</td>
<td>S</td>
<td>–</td>
<td>20</td>
<td>50</td>
<td>mV/khr</td>
</tr>
<tr>
<td>OSCILLATOR SECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Accuracy (T<sub>J</sub> = +25°C)</td>
<td>–</td>
<td>±2.0</td>
<td>±6.0</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Frequency Stability with Voltage (+8.0 V ≤ V<sub>CC</sub> ≤ +35 V)</td>
<td>Δf<sub>OSC</sub>/DV<sub>CC</sub></td>
<td>–</td>
<td>±1.0</td>
<td>±2.0</td>
<td>%</td>
</tr>
<tr>
<td>Frequency Stability with Temperature</td>
<td>Δf<sub>OSC</sub>/DT</td>
<td>–</td>
<td>±0.3</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>Minimum Frequency (R<sub>T</sub> = 150 kΩ, C<sub>T</sub> = 0.2 μF)</td>
<td>f<sub>min</sub></td>
<td>–</td>
<td>50</td>
<td>–</td>
<td>Hz</td>
</tr>
<tr>
<td>Maximum Frequency (R<sub>T</sub> = 2.0 kΩ, C<sub>T</sub> = 1.0 nF)</td>
<td>f<sub>max</sub></td>
<td>400</td>
<td>–</td>
<td>–</td>
<td>kHz</td>
</tr>
<tr>
<td>Current Mirror (I<sub>RT</sub> = 2.0 mA)</td>
<td>1.7</td>
<td>2.0</td>
<td>2.2</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Clock Amplitude</td>
<td>3.0</td>
<td>3.5</td>
<td>–</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Clock Width (T<sub>J</sub> = +25°C)</td>
<td>0.3</td>
<td>0.5</td>
<td>1.0</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Sync Threshold</td>
<td>1.2</td>
<td>2.0</td>
<td>2.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Sync Input Current (Sync Voltage = +3.5 V)</td>
<td>–</td>
<td>1.0</td>
<td>2.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>ERROR AMPLIFIER SECTION (V<sub>CM</sub> = +5.1 V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>V<sub>IO</sub></td>
<td>–</td>
<td>2.0</td>
<td>10</td>
<td>mV</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I<sub>IB</sub></td>
<td>–</td>
<td>1.0</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I<sub>IO</sub></td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td>DC Open Loop Gain (R<sub>L</sub> ≥ 10 MΩ)</td>
<td>A<sub>VOL</sub></td>
<td>60</td>
<td>75</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>Low Level Output Voltage</td>
<td>V<sub>OL</sub></td>
<td>–</td>
<td>0.2</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>High Level Output Voltage</td>
<td>V<sub>OH</sub></td>
<td>3.8</td>
<td>5.6</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Common Mode Rejection Ratio (+1.5 V ≤ V<sub>CM</sub> ≤ +5.2 V)</td>
<td>CMRR</td>
<td>60</td>
<td>75</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio (+8.0 V ≤ V<sub>CC</sub> ≤ +35 V)</td>
<td>PSRR</td>
<td>50</td>
<td>60</td>
<td>–</td>
<td>dB</td>
</tr>
<tr>
<td>PWM COMPARATOR SECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Duty Cycle</td>
<td>DC<sub>min</sub></td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td>DC<sub>max</sub></td>
<td>45</td>
<td>49</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>Input Threshold, Zero Duty Cycle (Note 5)</td>
<td>V<sub>th</sub></td>
<td>0.6</td>
<td>0.9</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Input Threshold, Maximum Duty Cycle (Note 5)</td>
<td>V<sub>th</sub></td>
<td>–</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I<sub>IB</sub></td>
<td>–</td>
<td>0.05</td>
<td>1.0</td>
<td>μA</td>
</tr>
</tbody>
</table>

3. T_{low} = 0°C T_{high} = +70°C
4. Since long term stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.
5. Tested at f_{osc} = 40 kHz (R_T = 3.6 kΩ, C_T = 0.01 μF, R_D = 0 Ω).
ELECTRICAL CHARACTERISTICS (continued)

SOFT-START SECTION

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft-Start Current ($V_{\text{shutdown}} = 0$ V)</td>
<td></td>
<td>25</td>
<td>50</td>
<td>80</td>
<td>μA</td>
</tr>
<tr>
<td>Soft-Start Voltage ($V_{\text{shutdown}} = 2.0$ V)</td>
<td></td>
<td></td>
<td>0.4</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>Shutdown Input Current ($V_{\text{shutdown}} = 2.5$ V)</td>
<td></td>
<td></td>
<td>0.4</td>
<td>1.0</td>
<td>mA</td>
</tr>
</tbody>
</table>

OUTPUT DRIVERS (Each Output, $V_{\text{CC}} = +20$ V)

<table>
<thead>
<tr>
<th>Output Low Level</th>
<th>V_{OL}</th>
<th></th>
<th>0.2</th>
<th>0.4</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{\text{sink}} = 20$ mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{\text{sink}} = 100$ mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output High Level</td>
<td>V_{OH}</td>
<td>18</td>
<td>19</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under Voltage Lockout (V_8 and V_9 = High)</td>
<td>V_{UL}</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>V</td>
</tr>
<tr>
<td>Collector Leakage, $V_{\text{C}} = +35$ V (Note 6)</td>
<td>$I_{\text{C(\text{leak})}}$</td>
<td></td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Rise Time ($C_L = 1.0$ nF, $T_J = 25^\circ$ C)</td>
<td>t_r</td>
<td></td>
<td></td>
<td>100</td>
<td>600 ns</td>
</tr>
<tr>
<td>Fall Time ($C_L = 1.0$ nF, $T_J = 25^\circ$ C)</td>
<td>t_f</td>
<td></td>
<td></td>
<td>50</td>
<td>300 ns</td>
</tr>
<tr>
<td>Shutdown Delay ($V_{DS} = +3.0$ V, $C_S = 0$, $T_J = +25^\circ$ C)</td>
<td>t_{ds}</td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.5 μs</td>
</tr>
<tr>
<td>Supply Current ($V_{\text{CC}} = +35$ V)</td>
<td>I_{CC}</td>
<td></td>
<td>14</td>
<td>20</td>
<td>mA</td>
</tr>
</tbody>
</table>

6. Applies to SG3525A only, due to polarity of output pulses.

![Figure 2. Lab Test Fixture](http://onsemi.com)

Figure 2. Lab Test Fixture

http://onsemi.com
Figure 3. Oscillator Charge Time versus R_T

Figure 4. Oscillator Discharge Time versus R_D

Figure 5. Error Amplifier Open Loop Frequency Response

Figure 6. Output Saturation Characteristics

Figure 7. Oscillator Schematic

Figure 8. Error Amplifier Schematic
Figure 9. Output Circuit
(1/2 Circuit Shown)

For single-ended supplies, the driver outputs are grounded. The \(V_C \) terminal is switched to ground by the totem-pole source transistors on alternate oscillator cycles.

Figure 10. Single-Ended Supply

The low source impedance of the output drivers provides rapid charging of power FET input capacitance while minimizing external components.

Figure 12. Driving Power FETS

In conventional push-pull bipolar designs, forward base drive is controlled by \(R_1-R_3 \). Rapid turn-off times for the power devices are achieved with speed-up capacitors \(C_1 \) and \(C_2 \).

Figure 11. Push-Pull Configuration

Low power transformers can be driven directly by the SG3525A. Automatic reset occurs during deadtime, when both ends of the primary winding are switched to ground.

Figure 13. Driving Transformers in a Half-Bridge Configuration
RESERVED FOR INTERNAL USE

NOTES:
2. CONTROLLING DIMENSION: INCHES.
3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-
 AGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3.
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH
 OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
 NOT TO EXCEED 0.10 INCH.
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
 PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR
 TO DATUM C.
6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
 LEADS UNCONSTRAINED.
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
 LEADS, WHERE THE LEADS EXIT THE BODY.
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
 CORNERS).

GENERAL
MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
G = Pb−Free Package

*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “∗”,
may or may not be present.

NOTE 1:

NOTE 2:
CONTROLLING DIMENSION: INCHES.

NOTE 3:
DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-
AGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3.

NOTE 4:
DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH
OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
NOT TO EXCEED 0.10 INCH.

NOTE 5:
DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR
TO DATUM C.

NOTE 6:
DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
LEADS UNCONSTRAINED.

NOTE 7:
DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
LEADS, WHERE THE LEADS EXIT THE BODY.

NOTE 8:
PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
CORNERS).

PDIP−16
CASE 648−08
ISSUE V

DATE 22 APR 2015

On Semiconductor and ON Semiconductor Industries, LLC are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding

MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS

PDIP−16

NOTES:
2. CONTROLLING DIMENSION: INCHES.
3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-
 AGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3.
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH
 OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
 NOT TO EXCEED 0.10 INCH.
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
 PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR
 TO DATUM C.
6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
 LEADS UNCONSTRAINED.
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
 LEADS, WHERE THE LEADS EXIT THE BODY.
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
 CORNERS).

GENERAL
MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
G = Pb−Free Package

*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “∗”,
may or may not be present.

NOTE 1:

NOTE 2:
CONTROLLING DIMENSION: INCHES.

NOTE 3:
DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-
AGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3.

NOTE 4:
DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH
OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
NOT TO EXCEED 0.10 INCH.

NOTE 5:
DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR
TO DATUM C.

NOTE 6:
DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
LEADS UNCONSTRAINED.

NOTE 7:
DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
LEADS, WHERE THE LEADS EXIT THE BODY.

NOTE 8:
PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
CORNERS).

PDIP−16
CASE 648−08
ISSUE V

DATE 22 APR 2015

On Semiconductor and ON Semiconductor Industries, LLC are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding

MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS

PDIP−16

NOTES:
2. CONTROLLING DIMENSION: INCHES.
3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-
 AGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3.
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH
 OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
 NOT TO EXCEED 0.10 INCH.
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
 PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR
 TO DATUM C.
6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
 LEADS UNCONSTRAINED.
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
 LEADS, WHERE THE LEADS EXIT THE BODY.
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
 CORNERS).

GENERAL
MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
G = Pb−Free Package

*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “∗”,
may or may not be present.

NOTE 1:

NOTE 2:
CONTROLLING DIMENSION: INCHES.

NOTE 3:
DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-
AGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3.

NOTE 4:
DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH
OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
NOT TO EXCEED 0.10 INCH.

NOTE 5:
DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR
TO DATUM C.

NOTE 6:
DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
LEADS UNCONSTRAINED.

NOTE 7:
DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
LEADS, WHERE THE LEADS EXIT THE BODY.

NOTE 8:
PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
CORNERS).
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

SOIC−16 WB

CASE 751G−03

ISSUE D

DATE 12 FEB 2013

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.

3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.

4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

<table>
<thead>
<tr>
<th>DIM</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MIN 2.30</td>
</tr>
<tr>
<td>A1</td>
<td>MIN 0.10</td>
</tr>
<tr>
<td>B</td>
<td>MIN 0.35</td>
</tr>
<tr>
<td>C</td>
<td>MIN 0.23</td>
</tr>
<tr>
<td>D</td>
<td>MIN 10.15</td>
</tr>
<tr>
<td>E</td>
<td>MIN 7.40</td>
</tr>
<tr>
<td>e</td>
<td>MIN 1.27</td>
</tr>
<tr>
<td>H</td>
<td>MIN 10.05</td>
</tr>
<tr>
<td>h</td>
<td>MIN 0.25</td>
</tr>
<tr>
<td>L</td>
<td>MIN 0.50</td>
</tr>
</tbody>
</table>

SOLDERING FOOTPRINT

16X 0.58

1.27 PITCH DIMENSIONS: MILLIMETERS

11.00

16X 1.62

GREAT

MARKING DIAGRAM

XXXXXXX = Specific Device Code

A = Assembly Location

WL = Wafer Lot

YY = Year

WW = Work Week

G = Pb−Free Package

This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “”, may or may not be present.*

DOCUMENT NUMBER: 98ASB42567B

DESCRIPTION: SOIC−16 WB

Electronic versions are uncontrolled except when accessed directly from the Document Repository.

Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.

© Semiconductor Components Industries, LLC, 2019 www.onsemi.com