onsemi

Silicon Carbide (SiC) Module – EliteSiC, 6 mohm SiC M1 MOSFET, 1200 V, 2-PACK Half Bridge Topology, F2 Package

NXH006P120MNF2PTG

The NXH006P120MNF2 is a power module containing an 6 m Ω / 1200 V SiC MOSFET half–bridge and a thermistor in an F2 package.

Features

- $6 \text{ m}\Omega / 1200 \text{ V}$ SiC MOSFET Half-Bridge
- Thermistor
- Options with Pre-Applied Thermal Interface Material (TIM) and without Pre-Applied TIM
- Options with Solderable Pins and Press-Fit Pins
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

Typical Applications

- Solar Inverter
- Uninterruptible Power Supplies
- Electric Vehicle Charging Stations
- Industrial Power

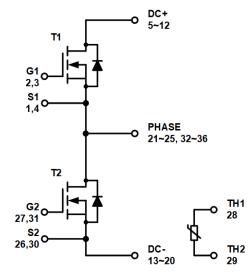
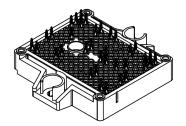
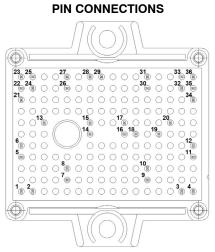



Figure 1. NXH006P120MNF2 Schematic Diagram

PACKAGE PICTURE



PIM36 56.7x42.5 (PRESS FIT) CASE 180BY

MARKING DIAGRAM

- XXXXX = Specific Device Code AT = Assembly & Test Site Code
- YWW = Year and Work Week Code

See Pin Function Description for pin names

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

PIN FUNCTION DESCRIPTION

Pin	Name	Description
1	S1	Q1 Kelvin Emitter (High side switch)
2	G1	Q1 Gate (High side switch)
3	G1	Q1 Gate (High side switch)
4	S1	Q1 Kelvin Emitter (High side switch)
5	DC+	DC Positive Bus connection
6	DC+	DC Positive Bus connection
7	DC+	DC Positive Bus connection
8	DC+	DC Positive Bus connection
9	DC+	DC Positive Bus connection
10	DC+	DC Positive Bus connection
11	DC+	DC Positive Bus connection
12	DC+	DC Positive Bus connection
13	DC-	DC Negative Bus connection
14	DC-	DC Negative Bus connection
15	DC-	DC Negative Bus connection
16	DC-	DC Negative Bus connection
17	DC-	DC Negative Bus connection
18	DC-	DC Negative Bus connection
19	DC-	DC Negative Bus connection
20	DC-	DC Negative Bus connection
21	PHASE	Center point of half bridge
22	PHASE	Center point of half bridge
23	PHASE	Center point of half bridge
24	PHASE	Center point of half bridge
25	PHASE	Center point of half bridge
26	S2	Q2 Kelvin Emitter (Low side switch)
27	G2	Q2 Gate (Low side switch)
28	TH1	Thermistor Connection 1
29	TH2	Thermistor Connection 2
30	S2	Q2 Kelvin Emitter (Low side switch)
31	G2	Q2 Gate (Low side switch)
32	PHASE	Center point of half bridge
33	PHASE	Center point of half bridge
34	PHASE	Center point of half bridge
35	PHASE	Center point of half bridge
36	PHASE	Center point of half bridge

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
SIC MOSFET	• • •		
Drain-Source Voltage	V _{DSS}	1200	V
Gate-Source Voltage	V _{GS}	+25/-15	V
Continuous Drain Current @ $T_c = 80^{\circ}C (T_J = 175^{\circ}C)$	Ι _D	304	А
Pulsed Drain Current ($T_J = 175^{\circ}C$) (Note 2)	I _{Dpulse}	912	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	950	W
Short Circuit Withstand Time @ V_{GE} = 15 V, V_{CE} = 600 V, T_J $\leq150^\circ\text{C}$	T _{sc}	2.0	μs
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C
THERMAL PROPERTIES			
Storage Temperature Range	T _{stg}	-40 to 150	°C
TIM Layer Thickness	T _{TIM}	160 ± 20	μm
INSULATION PROPERTIES			
Isolation test voltage, t = 1 sec, 60 Hz	V _{is}	4800	V _{RMS}
Creepage distance		12.7	mm
CTI		600	
Substrate Ceramic Material		HPS	
Substrate Ceramic Material Thickness		0.38	mm
Substrate Warpage (Note 3)	W	Max 0.18	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

Operating parameters. 2. Calculated for 1 ms pulse, package limitation at 400 A.

3. Height difference between horizontal plane and substrate bottom copper.

RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	TJ	-40	175	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS

 T_J = 25 °C unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
SIC MOSFET CHARACTERISTICS							
Drain-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 800 µA	V _{(BR)DSS}	1200	-	-	V	
Zero Gate Voltage Drain Current $V_{GS} = 0 V$, $V_{DS} = 1200 V$		I _{DSS}	-	-	300	μA	
Drain-Source On Resistance	V_{GS} = 20 V, I _D = 200 A, T _J = 25°C	$V_{GS} = 20 \text{ V}, \text{ I}_{D} = 200 \text{ A}, \text{ T}_{J} = 25^{\circ}\text{C}$ $R_{DS(ON)}$		5.48	7.2	mΩ	
	V_{GS} = 20 V, I _D = 200 A, T _J = 125°C		-	6.52	-		
	V_{GS} = 20 V, I _D = 200 A, T _J = 150°C		-	7.28	-		
Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 80 \text{ mA}$	V _{GS(TH)}	1.8	2.83	4.3	V	
$Gate \ Leakage \ Current \qquad \qquad V_{GS} = -10 \ V / 20 \ V, \ V_{DS} = 0 \ V$		I _{GSS}	-1000	-	1000	nA	

ELECTRICAL CHARACTERISTICS (continued)

 $T_{\rm J}$ = 25 $^\circ C$ unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SIC MOSFET CHARACTERISTICS	•	•				•
Input Capacitance	V_{DS} = 800 V, V_{GS} = 0 V, f = 1 MHz	C _{ISS}	-	6687	_	pF
Reverse Transfer Capacitance		C _{RSS}	-	49	-	
Output Capacitance		C _{OSS}	-	1092	-	
Total Gate Charge	V_{DS} = 800 V, V_{GS} = 20 V, I_{D} = 200 A	Q _{G(TOTAL)}	-	847	-	nC
Gate-Source Charge		Q _{GS}	-	231	-	nC
Gate-Drain Charge		Q _{GD}	-	195	-	nC
Turn-on Delay Time	$T_J = 25^{\circ}C$	t _{d(on)}	-	54	-	ns
Rise Time	- V _{DS} = 600 V, I _D = 200 A V _{GS} = -5 V / 20 V, R _G = 1.8 Ω	t _r	-	21	-	
Turn-off Delay Time		t _{d(off)}	-	174	-	
Fall Time		t _f	-	22	-	
Turn-on Switching Loss per Pulse		E _{ON}	-	2.1	_	mJ
Turn-off Switching Loss per Pulse	-	E _{OFF}	-	2.75	_	
Turn-on Delay Time	$T_J = 150^{\circ}C$	t _{d(on)}	-	48	_	ns
Rise Time	$V_{DS} = 600 \text{ V}, \text{ I}_D = 200 \text{ A}$ V _{GS} = -5 V / 20 V, R _G = 1.8 Ω	t _r	-	19	-	
Turn-off Delay Time		t _{d(off)}	-	196	-	
Fall Time		t _f	-	22	-	
Turn-on Switching Loss per Pulse		E _{ON}	-	2.3	-	mJ
Turn off Switching Loss per Pulse		E _{OFF}	-	2.93	-	
Diode Forward Voltage	$I_D = 200 \text{ A}, T_J = 25^{\circ}\text{C}$	V _{SD}	-	4.0	6	V
	$I_D = 200 \text{ A}, T_J = 150^{\circ}\text{C}$		-	3.6	-	
Thermal Resistance - Chip-to-Case	M1, M2	R _{thJC}	-	0.10	-	°C/W
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2 Mil +2%, A = 2.8 W/mK	R _{thJH}	-	0.21	_	°C/W

THERMISTOR CHARACTERISTICS

Nominal Resistance	T = 25°C	R ₂₅	-	5	-	kΩ
	T = 100°C	R ₁₀₀	-	457	-	Ω
Deviation of R25		$\Delta R/R$	-3	-	3	%
Power Dissipation		PD	_	50	-	mW
Power Dissipation Constant			_	5	-	mW/K
B-value	B(25/50), tolerance ±3%		_	3375	-	к
B-value	B(25/100), tolerance ±3%		-	3455	-	К

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH006P120MNF2PTG	NXH006P120MNF2PTG	F2HALFBR: Case 180BY Press-fit Pins with pre-applied thermal interface material (TIM) (Pb-Free / Halide Free)	20 Units / Blister Tray

TYPICAL CHARACTERISTICS

HALFBRIDGE MOSFET

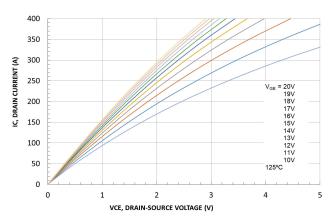


Figure 2. MOSFET Typical Output Characteristic at 125°C

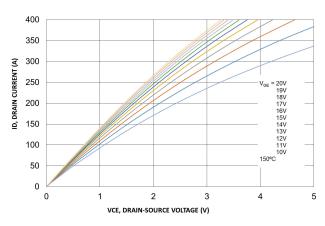


Figure 4. MOSFET Typical Output Characteristic

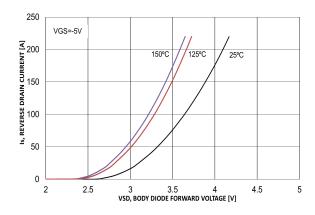


Figure 6. Body Diode Forward Characteristic

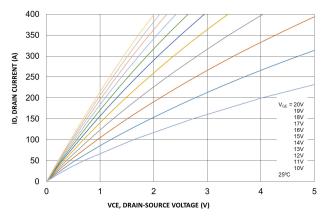


Figure 3. MOSFET Typical Output Characteristic

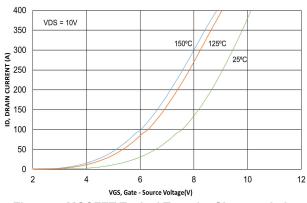


Figure 5. MOSFET Typical Transfer Characteristic

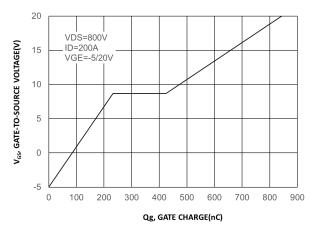


Figure 7. Gate-to-Source Voltage vs. Total Charge

TYPICAL CHARACTERISTICS

(25°C unless otherwise noted)

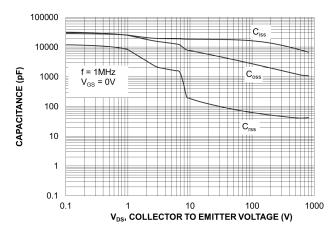


Figure 8. Capacitance vs. Drain-to-Source Voltage

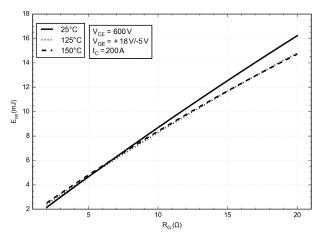


Figure 10. Typical Switching Loss Eon vs. Rg

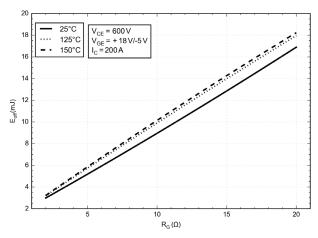


Figure 12. Typical Switching Loss Eoff vs. Rg

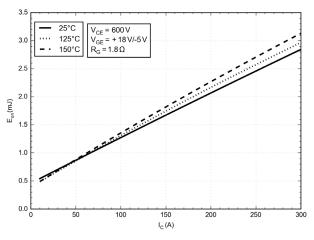


Figure 9. Typical Switching Loss Eon vs. IC

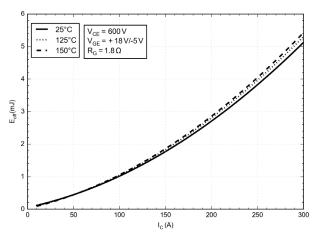


Figure 11. Typical Switching Loss Eoff vs. IC

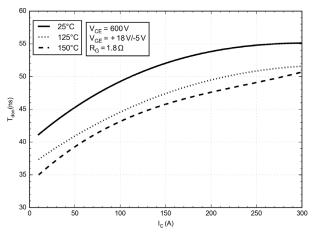


Figure 13. Typical Switching Loss Tdon vs. IC

TYPICAL CHARACTERISTICS

(25°C unless otherwise noted)

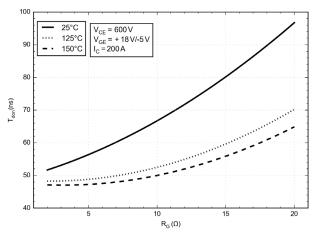


Figure 14. Typical Switching Loss Tdon vs. Rg

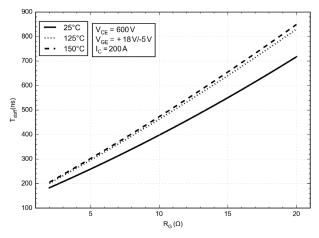


Figure 16. Typical Switching Loss Tdoff vs. Rg

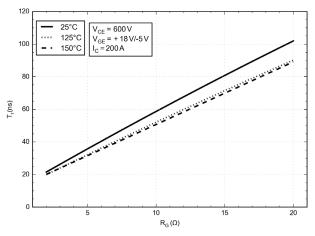


Figure 18. Typical Switching Loss Tr vs. Rg

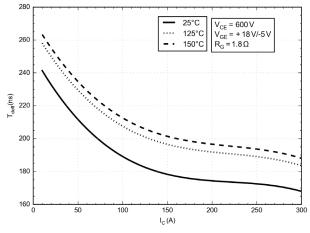


Figure 15. Typical Switching Loss Tdoff vs. IC

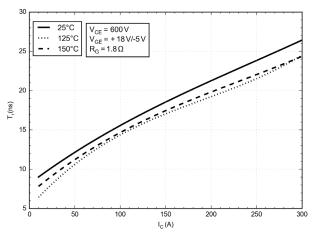


Figure 17. Typical Switching Loss Tr vs. IC

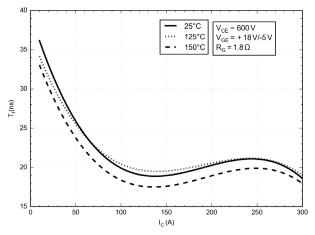


Figure 19. Typical Switching Loss Tf vs. IC

TYPICAL CHARACTERISTICS

(25°C unless otherwise noted)

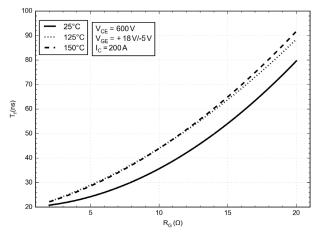


Figure 20. Typical Switching Loss Tf vs. Rg

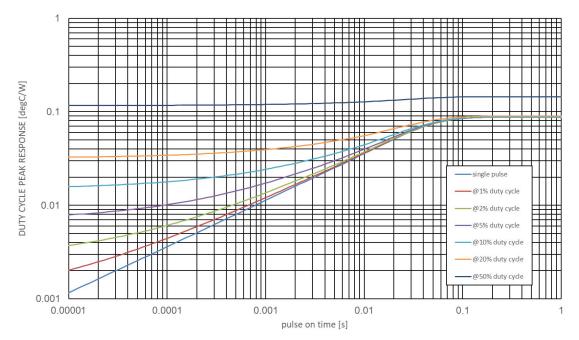


Figure 21. MOSFET Junction-to-Case Transient Thermal Impedance

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>