ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

MOSFET – Power, Single, N-Channel 30 V, 85 A

NVTYS004N03CL

Features

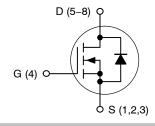
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Param	Parameter			Value	Unit
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain	T _A = 25°C		I _D	21	А
Current $R_{\theta JA}$ (Note 1)		T _A = 100°C		15	
Power Dissipation R _{0JA}		$T_A = 25^{\circ}C$	PD	3	W
(Note 1)	Steady	$T_A = 100^{\circ}C$		1.6	
Continuous Drain	State	$T_{C} = 25^{\circ}C$	۱ _D	85	А
Current $R_{\theta JC}$ (Note 1)		$T_{C} = 100^{\circ}C$		60	
Power Dissipation		$T_{C} = 25^{\circ}C$	PD	51.5	W
$R_{\theta JC}$ (Note 1)		$T_{C} = 100^{\circ}C$		26	
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	369	А
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			۱ _S	43	А
Single Pulse Drain-to-Source Avalanche Energy $(I_L = 6 A_{pk})$			E _{AS}	121	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	4.2 mΩ @ 10 V	85 A
30 V	6.1 mΩ @ 4.5 V	00 A

ORDERING INFORMATION

Device	Package	Shipping [†]
NVTYS004N03CLTWG	LFPAK33 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ ext{ heta}JC}$	2.9	°C/W
Junction-to-Ambient - Steady State	$R_{\theta JA}$	47.6	C/VV

2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

4. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Мах	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				18.9		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$			1.0	
		V _{DS} = 24 V	T _J = 125°C			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 20 V				±100	nA

ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = 250 μ A		1.3		2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-5.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		3	4.2	mΩ
		V _{GS} = 4.5 V	I _D = 30 A		4.7	6.1	11152
Forward Transconductance	9 FS	V _{DS} = 1.5 V, I _D	= 15 A		58		S
Gate Resistance	R _G	T _A = 25°0	2		0.7		Ω

CHARGES AND CAPACITANCES

Input Capacitance	C _{ISS}		1520		
Output Capacitance	C _{OSS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 15 V	808		pF
Reverse Transfer Capacitance	C _{RSS}		26		
Capacitance Ratio	C _{RSS} /C _{ISS}	V_{GS} = 0 V, V_{DS} = 15 V, f = 1 MHz	0.023		
Total Gate Charge	Q _{G(TOT)}		9		
Threshold Gate Charge	Q _{G(TH)}		2		-0
Gate-to-Source Charge	Q _{GS}	V_{GS} = 4.5 V, V_{DS} = 15 V; I_{D} = 30 A	4.2		nC
Gate-to-Drain Charge	Q _{GD}		2		
Gate Plateau Voltage	V _{GP}		3		V
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 15 V; I_{D} = 30 A	21		nC
	•			•	

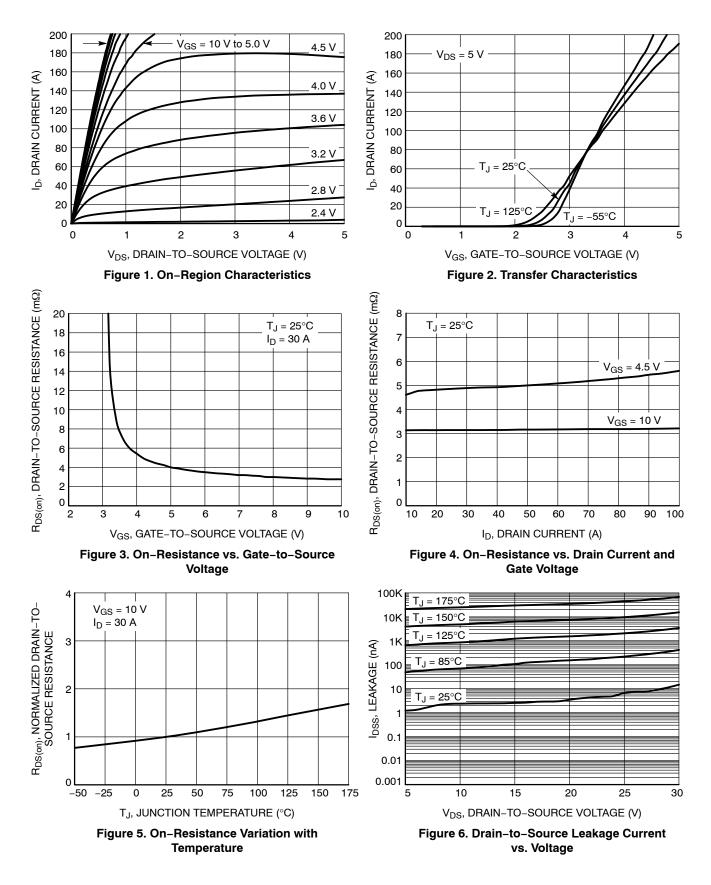
SWITCHING CHARACTERISTICS (Note 6)

Turn-On Delay Time	t _{d(ON)}		13.5	
Rise Time	tr	V _{GS} = 4.5 V, V _{DS} = 15 V,	6	20
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D}$ = 15 A, $R_{\rm G}$ = 3.0 Ω	18	ns
Fall Time	t _f		6	

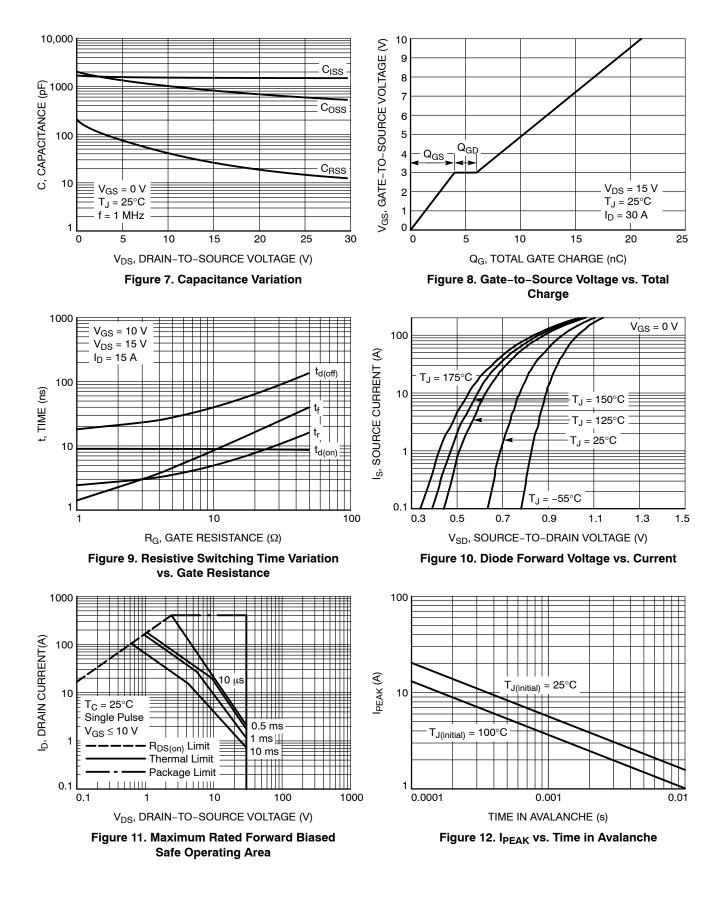
5. Pulse Test: pulse width $\,\leq\,$ 300 $\mu s,\,$ duty cycle $\,\leq\,$ 2%.

6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (Note	9 6)				-		
Turn-On Delay Time	t _{d(ON)}				9		
Rise Time	t _r	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω			3		
Turn-Off Delay Time	t _{d(OFF)}				23		ns
Fall Time	t _f				3.0		
DRAIN-SOURCE DIODE CHARACTER	ISTICS						
Forward Diode Voltage	V _{SD}	$V_{CS} = 0 V_{c}$ $T_J = 25^{\circ}C$			0.8	1.1	
		I _S = 10 A	$V_{GS} = 0 V,$ $I_{S} = 10 A$ $T_{J} = 125^{\circ}C$ $T_{J} = 125^{\circ}C$		0.7		V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 30 A			27		
Charge Time	t _a				13		ns
Discharge Time	t _b				14.5		
Reverse Recovery Charge	Q _{RR}	1			9		nC

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.


6. Switching characteristics are independent of operating junction temperatures.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

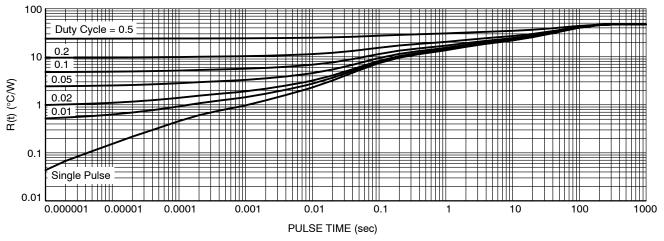
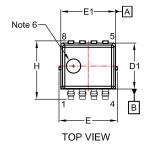
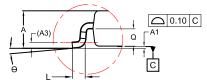
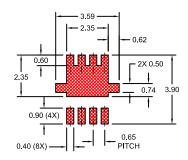
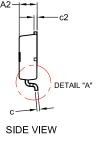
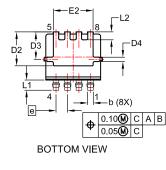




Figure 13. Thermal Characteristics


PACKAGE DIMENSIONS

LFPAK8 3.3x3.3, 0.65P CASE 760AD ISSUE E




DETAIL 'A' SCALE: 2:1

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS OR BURRS SHALL NOT EXCEED 0.150mm PER SIDE.
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 5. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- 6. OPTIONAL MOLD FEATURE.

DIM	MILLIMETERS				
DIM	MIN.	NOM.	MAX.		
А	0.95	1.05	1.15		
A1	0.00	0.05	0.10		
A2	0.95	1.00	1.05		
A3		0.15 REI	F		
b	0.27	0.32	0.37		
c	0.12	0.17	0.22		
c2	0.12	0.17	0.22		
D1	2.50	2.60	2.70		
D2	1.82	1.92	2.02		
D3	1.46	1.56	1.66		
D4	0.20	0.25	0.30		
Е	3.20	3.30	3.40		
E1	3.00	3.10	3.20		
E2	2.15	2.25	2.35		
е	().65 BSC	;		
Н	3.20	3.30	3.40		
L	0.25	0.37	0.50		
L1	0.48	0.58	0.68		
L2	0.35	0.45	0.55		
Q	0.45	0.50	0.55		
θ	0°	4°	8°		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make charges without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative