NUP4012PXV6

Quad Transient Voltage Suppressor Array

ESD Protection Diodes with Ultra-Low (0.7 pF) Capacitance

The four-line voltage transient suppressor array is designed to protect voltage-sensitive components that require ultra-low capacitance from ESD and transient voltage events. This device features a common anode design which protects four independent data lines in a single SOT-563 low profile package.

Excellent clamping capability, low capacitance, low leakage, and fast response time make these parts ideal for ESD protection on designs where board space is at a premium. Because of its low capacitance, it is suited for use in high frequency designs.

Features

- Low Capacitance (0.7 pF Typical)
- Protects up to Four Data Lines
- SOT-563 1.6 mm x 1.6 mm
- Low Profile of 0.55 mm for Slim Design Ultra
- $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$, and D_{4} Pins $=5.2 \mathrm{~V}$ Minimum Protection
- ESD Rating: IEC61000-4-2: Level 4
- This is a Pb -Free Device

Typical Applications

- USB 2.0 High-Speed Interface
- Cell Phones
- MP3 Players
- SIM Card Protection

MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Symbol	Rating	Value	Unit
T_{J}	Operating Junction Temperature Range	-40 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Solder Temperature - Maximum (10 seconds)	260	${ }^{\circ} \mathrm{C}$
ESD	IEC 61000-4-2 Contact	8000	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

SOT-563
CASE 463A

MARKING DIAGRAM

P7 = Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping †
NUP4012PXV6T1G	SOT-563 (Pb-Free)	3000/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

See Application Note AND8308/D for further description of survivability specs.

NUP4012PXV6

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter
I_{PP}	Maximum Reverse Peak Pulse Current
V_{C}	Clamping Voltage @ I_{PP}
$\mathrm{V}_{\mathrm{RWM}}$	Working Peak Reverse Voltage
I_{R}	Maximum Reverse Leakage Current @ $\mathrm{V}_{\mathrm{RWM}}$
V_{BR}	Breakdown Voltage $@ \mathrm{I}_{\mathrm{T}}$
I_{T}	Test Current
I_{F}	Forward Current
V_{F}	Forward Voltage $@ \mathrm{I}_{\mathrm{F}}$
P_{pk}	Peak Power Dissipation
C	Max. Capacitance @ $\mathrm{V}_{\mathrm{R}}=0$ and $\mathrm{f}=1.0 \mathrm{MHz}$

*See Application Note AND8308/D for detailed explanations of datasheet parameters.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Parameter	Conditions	Symbol	Min	Typ	Max	Unit
Reverse Working Voltage ($\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$, and D_{4})	(Note 1)	$\mathrm{V}_{\text {RWM }}$	-	-	4.0	V
Breakdown Voltage ($\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$, and D_{4})	$\mathrm{I}_{\mathrm{T}}=1 \mathrm{~mA}$, (Note 2)	V_{BR}	5.2	5.5	-	V
Reverse Leakage Current ($\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$, and D_{4})	@ $\mathrm{V}_{\mathrm{RWM}}$	I_{R}	-	-	1.0	$\mu \mathrm{A}$
Capacitance ($\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$, and D_{4})	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ (Line to GND)	C_{J}	-	0.7	0.9	pF
Clamping Voltage	@ $\mathrm{I}_{\mathrm{PP}}=1 \mathrm{~A}($ Note 3)	V_{C}	-	-	9.5	V
Clamping Voltage	Per IEC61000-4-2 (Note 4)	V_{C}	Figures 1 and 2			V

1. TVS devices are normally selected according to the working peak reverse voltage $\left(\mathrm{V}_{\mathrm{RWM}}\right)$, which should be equal or greater than the DC or continuous peak operating voltage level.
2. $V_{B R}$ is measured at pulse test current I_{T}.
3. Surge current waveform per Figure 5.
4. Typical waveform. For test procedure see Figures 3 and 4 and Application Note AND8307/D.

Figure 1. ESD Clamping Voltage Screenshot Positive 8 kV Contact per IEC61000-4-2

Figure 2. ESD Clamping Voltage Screenshot Negative 8 kV Contact per IEC61000-4-2

IEC 61000-4-2 Spec.

Level	Test (kV) Voltage	First Peak Current (A)	Current at $\mathbf{3 0}$ ns (A)	Current at $\mathbf{6 0}$ ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

Figure 3. IEC61000-4-2 Spec

Figure 4. Diagram of ESD Test Setup

The following is taken from Application Note AND8308/D - Interpretation of Datasheet Parameters for ESD Devices.

ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000-4-2 waveform. Since the IEC61000-4-2 was written as a pass/fail spec for larger
systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D.

Figure 5. $8 \times 20 \mu \mathrm{~s}$ Pulse Waveform

SOT-563-6 1.60×1.20x0.55, 0.50P
CASE 463A
ISSUE J
DATE 15 FEB 2024
NOTES:

1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
2. ALL DIMENSION ARE IN MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	0.50	0.55	0.60
b	0.17	0.22	0.27
C	0.08	0.13	0.18
D	1.50	1.60	1.70
E	1.10	1.20	1.30
e	0.50 BSC		
H	1.50	1.60	1.70
L	0.10	0.20	0.30

STYLE
1:
PIN 1. EMITTER 1
2. BASE 1
3. CDLLECTDR 2
4. EMITTER 2
5. BASE 2
5. BASE 2

STYLE $2:$

STYLE 3:
PIN 1. EMITTER 1
PIN 1. CATHEDE 1
2. EMITTER 2
3. BASE 2
4. COLLECTIR 2

CATHIDE 1
4. ANUTEANE
5. BASE 1
6. COLLECTDR 1
5. CATHDDE 2
5. CATHIDE
6. ANLDE/ANDDE 1

RECOMMENDED MOUNTING FOOTPRINT*
STYLE 4:
STYLE 5:
STYLE 6:
PIN 1. CDLLECTDR
2. CDLLECTDR
3. BASE

PIN 1. CATHODE
2. CATHDDE
3. ANDDE
4. EMITTER
5. CDLLECTDR
6. CDLLECTDR
4. ANDDE
5. CATHIDE

PIN 1. CATHODE
2. ANDDE
3. CATHDDE
6. CATHIDE
4. CATHDDE
5. CATHIDE
6. CATHEDE

STYLE 7:
PIN 1. CATHODE
2. ANDDE
3. CATHODE
4. CATHEDE
5. ANDDE
6. CATHDDE

STYLE 8:
PIN 1. DRAIN
2. DRAIN
3. GATE

STYLE 9:
PIN 1. SDURCE 1
2. GATE 1
3. DRAIN 2
4. SIURCE 4. SQURCE 2
5. DRAIN
5. GATE 2
6. DRAIN

STYLE 10
PIN 1. CATHDDE 1
2. N/C
3. CATHDDE 2
4. ANDDE 2
5. N / C
6. ANDDE 1

STYLE 11:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTDR 1
4. EMITTER 1
5. BASE 1
6. CDLLECTDR 2

* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE

STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC
 MARKING DIAGRAM*

XX $=$ Specific Device Code
$M \quad=$ Month Code

- $\quad=\mathrm{Pb}-$ Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON11126D | Electronic versions are uncontrolled except when accessed difecty from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLELED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-563-61.60x1.20x0.55, 0.50P | PAGE 1 OF 1 |

[^0]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: onsemi and OnSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

