MOSFET – Dual, N-Channel with ESD Protection, Small Signal, SOT-563 60 V, 310 mA

Features

- Low R_{DS(on)} Improving System Efficiency
- Low Threshold Voltage
- ESD Protected Gate
- Small Footprint 1.6 x 1.6 mm
- These are Pb-Free Devices

Applications

- Load/Power Switches
- Driver Circuits: Relays, Lamps, Displays, Memories, etc.
- Battery Management/Battery Operated Systems
- Cell Phones, Digital Cameras, PDAs, Pagers, etc.

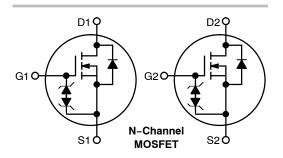
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted.)

Parame	eter		Symbol	Value	Unit
Drain-to-Source Voltage	Drain-to-Source Voltage				V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$	۱ _D	294	mA
Current (Note 1)	State	$T_A = 85^{\circ}C$		212	
Power Dissipation (Note 1)	Stea	dy State	PD	250	mW
Continuous Drain	$T_A = 25^{\circ}C$		۱ _D	310	mA
Current (Note 1)	t≤5 s	$T_A = 85^{\circ}C$		225	
Power Dissipation (Note 1)	t ≤ 5 s		P _D	280	mW
Pulsed Drain Current	t _p =	= 10 μs	I _{DM}	590	mA
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode)			IS	350	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C
Gate-Source ESD Rating	(HBM, Me	ethod 3015)	ESD	1800	V

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	500	°C/W
Junction-to-Ambient – t \leq 5 s (Note 1)		447	

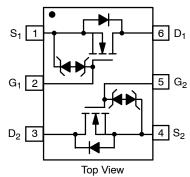
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Surface mounted on FR4 board using 1 in sq pad size (Cu. area = 1.127 in sq [1 oz] including traces).

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D Max
60	1.6 Ω @ 10 V	310 mA
00	2.5 Ω @ 4.5 V	310 IIIA



MARKING

S7 = Specific Device Code M = Date Code

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted.)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D	= 250 μA	60	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	-		-	71	_	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}			-	-	1.0	μA
		V _{DS} = 60 V T	T _J = 125°C	-	-	500	
		V _{GS} = 0 V	$T_J = 25^{\circ}C$	-	-	100	nA
		$V_{DS} = 50 V$	T _J = 85°C	-	-	100	
Gate-to-Source Leakage Current	I _{GSS}	$I_{GSS} = 0 V, V_{GS} = \pm 20 V$ $V_{DS} = 0 V, V_{GS} = \pm 10 V$		-	-	±10	μA
				-	-	450	nA
		$V_{DS} = 0 V, V_{GS}$	s = ±5.0 V	-	-	150	nA

ON CHARACTERISTICS (Note 3)

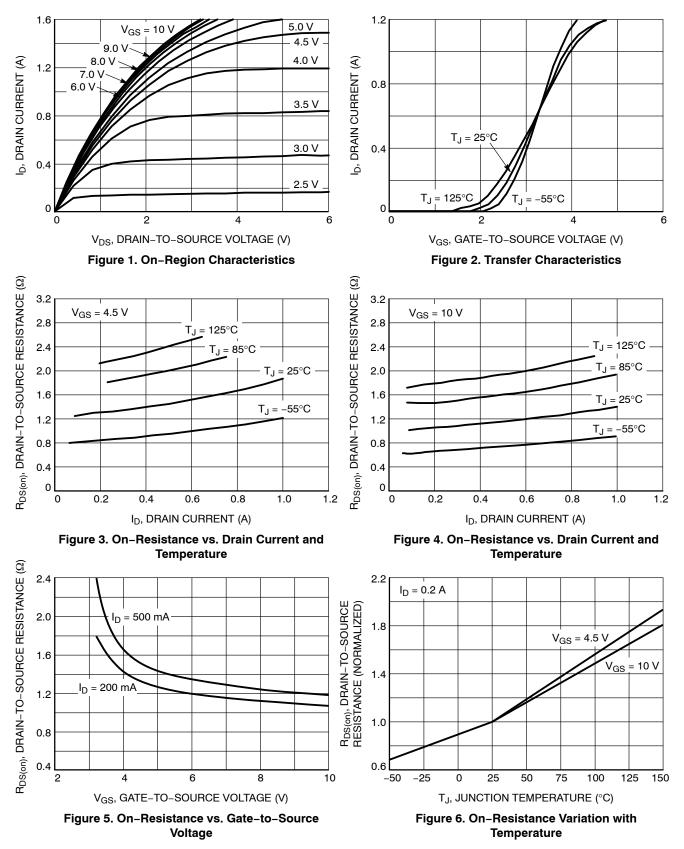
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS}=V_{DS},\ I_{D}=250\ \mu A$	1.0	_	2.5	V
Negative Threshold Temperature Coefficient	$V_{GS(TH)}/T_J$	-	-	4.0	-	mV/°C
Drain-to-Source On Resistance	Р	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 500 \text{ mA}$	-	1.19	1.6	Ω
	R _{DS(on)}	V_{GS} = 4.5 V, I _D = 200 mA	-	1.33	2.5	
Forward Transconductance	9 _{FS}	V_{DS} = 5.0 V, I_{D} = 200 mA	-	80	-	S

CHARGES AND CAPACITANCES

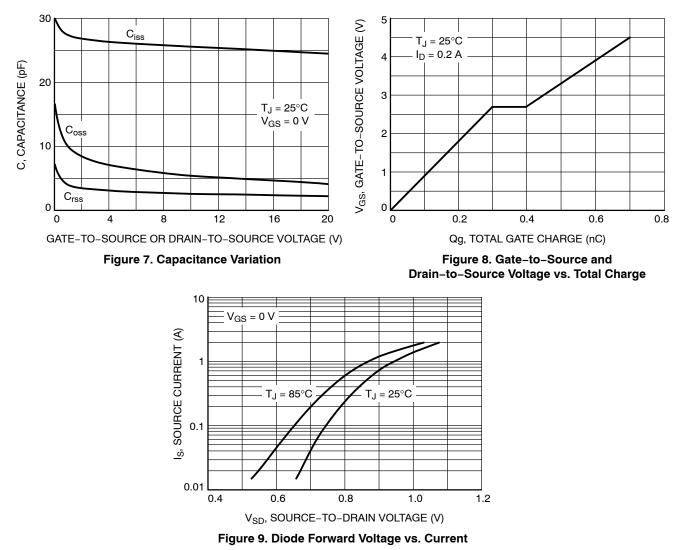
Input Capacitance	C _{ISS}		-	24.5	-	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 20 V	-	4.2	-	
Reverse Transfer Capacitance	C _{RSS}		-	2.2	-	
Total Gate Charge	Q _{G(TOT)}		-	0.7	-	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 10 V; I _D = 200 mA	-	0.1	-	
Gate-to-Source Charge	Q _{GS}	I _D = 200 mA	-	0.3	-	
Gate-to-Drain Charge	Q _{GD}		-	0.1	_	

SWITCHING CHARACTERISTICS (Note 4)

Turn-On Delay Time	t _{d(ON)}		-	12	-	ns
Rise Time	t _r	V _{GS} = 10 V, V _{DD} = 30 V,	-	7.3	-	
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 200 \text{ mA}, R_G = 10 \Omega$	-	63.7	-	
Fall Time	t _f		-	30.6	-	


DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage		V _{GS} = 0 V,	$T_J = 25^{\circ}C$	-	0.8	1.2	V
	V _{SD}	I _S = 200 mA	$T_J = 85^{\circ}C$	-	0.7	-	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Surface-mounted on FR4 board using 1 in. sq. pad size (Cu. area = 1.127 in sq [1 oz] including traces). 3. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%. 4. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

ORDERING INFORMATION

Device	Package	Shipping
NTZD5110NT1G	SOT-563 (Pb-Free)	4000 / Tape & Reel
NTZD5110NT5G	SOT-563 (Pb-Free)	8000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOT-563-6 1.60x1.20x0.55, 0.50P CASE 463A ISSUE J DATE 15 FEB 2024 NOTES: 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018. 2. ALL DIMENSION ARE IN MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM 3 THICKNESS OF BASE MATERIAL. -A D MILLIMETERS А 6X L DIM В MIN NDM. MAX. m 0.50 0.55 А 0.60 ł 6 4 PIN b 0.17 0.22 0.27 F Н REFERENCE C 0.08 0.13 0.18 2 ັບ 1 3 D 1.50 1.60 1.70 E 1.20 1.30 1.10 -⊨ 6X b C ⊕ 0.08∭ A B е 0.50 BSC е Н 1.50 1.60 1.70 TOP VIEW SIDE VIEW L 0.10 0.20 0.30 1.30 6X 0.45 0.30 1.80 STYLE 1: STYLE 2 STYLE 3 PIN 1. EMITTER 1 2. BASE 1 PIN 1. EMITTER 1 PIN 1. CATHODE 1 2. CATHODE 1 2. EMITTER 2 3. COLLECTOR 2 3. BASE 2 3. ANDDE/ANDDE 2 4. EMITTER 2 4. COLLECTOR 2 4. CATHODE 2 0.50 5. BASE 2 5. BASE 1 5. CATHODE 2 6. COLLECTOR 1 PITCH 6. COLLECTOR 1 6. ANDDE/ANDDE 1 RECOMMENDED MOUNTING FOOTPRINT* STYLE 6: PIN 1. CATHODE 2. ANODE FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE STYLE 5 STYLE 4: 1. CATHODE 2. CATHODE PIN 1. COLLECTOR PIN 2. COLLECTOR 3. BASE 3. ANDDE 3. CATHODE 4. ANDDE 5. CATHODE 4. CATHODE 5. CATHODE 4. EMITTER MANUAL, SOLDERRM/D. 5, COLLECTOR 6. COLLECTOR 6. CATHODE 6. CATHODE GENERIC **MARKING DIAGRAM*** STYLE 7: STYLE 8 STYLE 9 PIN 1. CATHODE PIN 1. DRAIN PIN 1. SOURCE 1 2. ANDDE 2. DRAIN 2. GATE 1 XXM. 3. CATHODE 4. CATHODE 3. GATE 4. SDURCE 5. DRAIN 3. DRAIN 2 4. SDURCE 2 5. GATE 2 1 5. ANDDE 6. CATHODE 6. DRAIN 6. DRAIN 1 XX = Specific Device Code M = Month Code = Pb-Free Package STYLE 10: STYLE 11: *This information is generic. Please refer to PIN 1. CATHODE 1 PIN 1. EMITTER 2 device data sheet for actual part marking. 2. N/C 3. CATHODE 2 2. BASE 2 3. COLLECTOR 1 Pb-Free indicator, "G" or microdot "•", may 4. ANDDE 2 EMITTER 1 4. or may not be present. Some products may BASE 5. N/C 5. not follow the Generic Marking. 6. ANDDE 1 COLLECTOR 2 6. Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON11126D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-563-6 1.60x1.20x0.55, 0.50P PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>