Small Signal MOSFET

20 V, 540 mA / -20 V, -430 mA Complementary N- and P-Channel MOSFETs with Integrated Pull Up/Down Resistor and ESD Protection

Features

- Leading Trench Technology for Low RDS(on) Performance
- High Efficiency System Performance
- Low Threshold Voltage
- Integrated G-S Resistor on Both Devices
- ESD Protected Gate
- Small Footprint 1.6 x 1.6 mm
- These are Pb-Free Devices

Applications

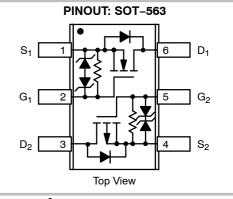
- Load/Power Switching with Level Shift
- Portable Electronic Products such as GPS, Cell Phones, DSC, PMP, Bluetooth Accessories

MAXIMUM RATINGS (T_J = 25° C unless otherwise specified)

Para	meter		Symbol	Value	Unit		
Drain-to-Source Voltaç	je		V _{DSS}	20	V		
Gate-to-Source Voltag	Gate-to-Source Voltage						
N-Channel Continu-	Steady	$T_A = 25^{\circ}C$		540			
ous Drain Current (Note 1)	State	$T_A = 85^{\circ}C$		390			
	t ≤ 5 s	$T_A = 25^{\circ}C$	1-	570	mA		
P-Channel Continu-	Steady	$T_A = 25^{\circ}C$	Ι _D	-430	ШA		
ous Drain Current (Note 1)	State	$T_A = 85^{\circ}C$		-310			
	t ≤ 5 s	$T_A = 25^{\circ}C$		-455			
Power Dissipation	Steady			250			
(Note 1)	State	$T_A = 25^{\circ}C$	PD		mW		
	$t \le 5 s$			280]		
Pulsed Drain Current	N-Channel	t 10.00	1	1500	mA		
	P-Channel	t _p = 10 μs	IDM	-750	III/A		
Operating Junction and	perature	TJ,	-55 to 150	°C			
	T _{STG}	150					
Source Current (Body I		۱ _S	350	mA			
Lead Temperature for S (1/8" from case for 1		oses	ΤL	260	°C		

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using 1 in sq. pad size


(Cu area = 1.127 in sq [1 oz] including traces).



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} Max	I _D Max (Note 1)		
	0.55 Ω @ 4.5 V			
N-Channel 20 V	0.7 Ω @ 2.5 V	540 mA		
201	0.9 Ω @ 1.8 V			
	0.9 Ω @ –4.5 V			
P-Channel -20 V	1.2 Ω @ –2.5 V	–430 mA		
	2.0 Ω @ –1.8 V			

ORDERING INFORMATION

Device	Package	Shipping [†]
NTZD3156CT1G	SOT-563	4000 / Tape & Reel
NTZD3156CT2G	SOT-563	4000 / Tape & Reel
NTZD3156CT5G	SOT-563	8000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Thermal Resistance Ratings

Parameter	Symbol	Мах	Unit
Junction-to-Ambient - Steady State (Note 2)	$R_{ heta JA}$	116	°C/W
Junction-to-Ambient – t = 5 s (Note 2)		304	

2. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	N/P	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	Ν	$V_{GS} = 0 V$	I _D = 250 μA	20			V
		Р		I _D = -250 μA	-20			
Drain-to-Source Breakdown Voltage Temperature Coefficient	V(_{BR)DSS} /T _J			-		20		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	Ν	V_{GS} = 0 V, V_{DS} = 16 V	$T_J = 25^{\circ}C$			1.0	μΑ
		Р	$V_{GS} = 0 V, V_{DS} = -16 V$				-1.0	
		Ν	V_{GS} = 0 V, V_{DS} = 16 V	T _J = 125°C			2.0	μΑ
		Р	$V_{GS} = 0 V, V_{DS} = -16V$				-5.0	
Gate-to-Source Leakage Current	I _{GSS}	Ν	V_{DS} = 0 V, V_{GS} =	±4.5 V			±50	μΑ
		Р					±50	

ON CHARACTERISTICS (Note 3)

Gate Threshold Voltage	V _{GS(TH)}	Ν	$V_{GS} = V_{DS}$	I _D = 250 μA	0.45		1.0	V	
		Р		I _D = -250 μA	-0.45		-1.0		
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J					2.0		−mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	Ν	V_{GS} = 4.5 V, I _D =	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 540 \text{ mA}$		0.19	0.55		
		Р	$V_{GS} = -4.5V$, $I_D = -430$ mA			0.39	0.9	Ω	
		Ν	V_{GS} = 2.5 V, I _D = 500 mA			0.26	0.7		
		Р	V_{GS} = -2.5V, I _D =		0.53	1.2			
		Ν	V_{GS} = 1.8 V, I _D = 350 mA			0.36	0.9		
		Р	$V_{GS} = -1.8V, I_D =$	–150 mA		0.72	2.0		
Forward Transconductance	9fs	Ν	V _{DS} = 10 V, I _D =	540 mA		1.46			
		Р	V _{DS} = -10 V, I _D =	–430 mA		1.18		S	

CHARGES, CAPACITANCES AND GATE RESISTANCE

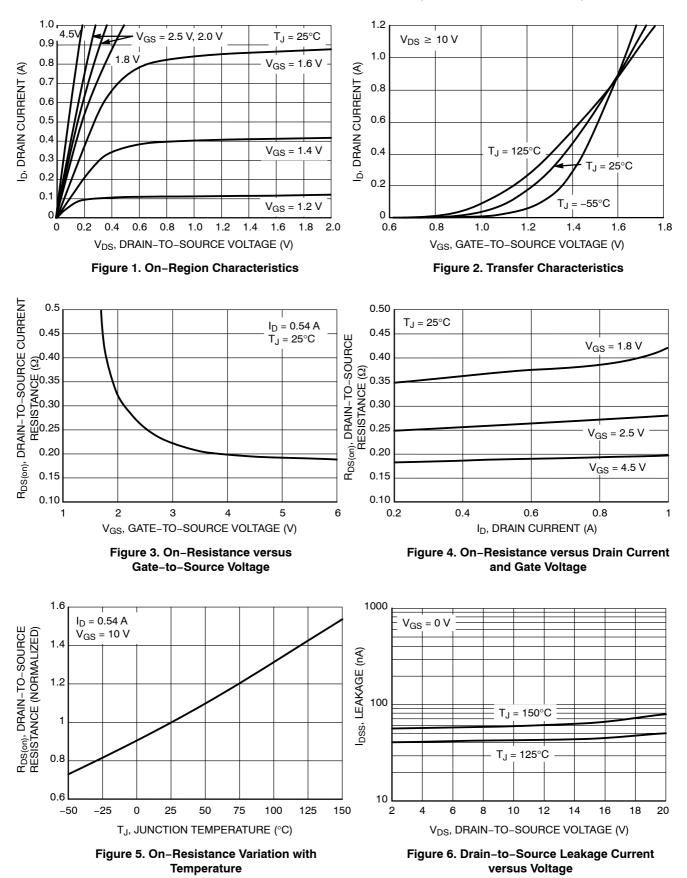
Input Capacitance	C _{ISS}			72	
Output Capacitance	C _{OSS}	Ν	$f = 1 MHz, V_{GS} = 0 V$ $V_{DS} = 16 V$	13	
Reverse Transfer Capacitance	C _{RSS}			10	~ [
Input Capacitance	C _{ISS}			93	pF
Output Capacitance	C _{OSS}	Р	f = 1 MHz, V _{GS} = 0 V V _{DS} = -16 V	15	
Reverse Transfer Capacitance	C _{RSS}		20	11	

3. Pulse Test: pulse width \leq 300 $\mu s,$ duty cycle \leq 2%

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

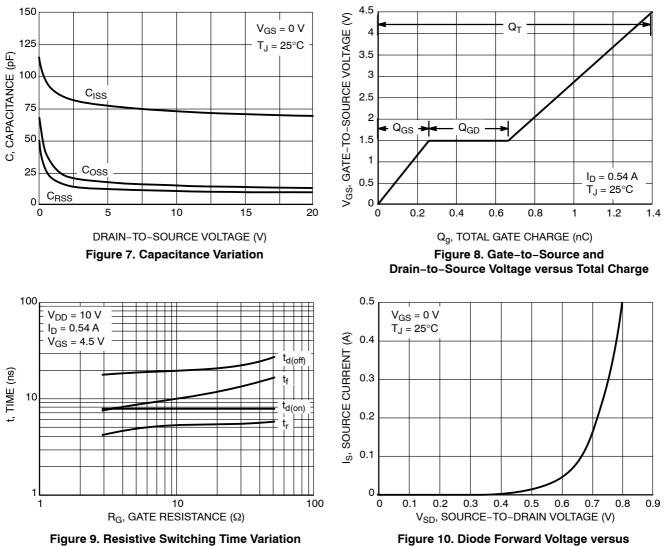
Parameter	Symbol	N/P	Test Condition	Min	Тур	Max	Unit
CHARGES, CAPACITANCES	AND GATE RE	SISTAN	CE		-		
Total Gate Charge	Q _{G(TOT)}		-		1.39	2.5	
Threshold Gate Charge	Q _{G(TH)}	N			0.1		
Gate-to-Source Charge	Q _{GS}		V _{GS} = 4.5 V, V _{DS} = 10 V; I _D = 540 mA		0.26		1
Gate-to-Drain Charge	Q _{GD}				0.39		
Total Gate Charge	Q _{G(TOT)}				1.49	2.5	nC
Threshold Gate Charge	Q _{G(TH)}	Р	V_{GS} = -4.5 V, V_{DS} = -10 V; I_{D} = -430 mA		0.1		
Gate-to-Source Charge	Q _{GS}	Р			0.3		
Gate-to-Drain Charge	Q _{GD}				0.37		
SWITCHING CHARACTERIS	TICS (V _{GS} = V)	(Note 4)		-	-	-
Turn–On Delay Time	t _{d(ON)}	Ν			7.7		
Rise Time	t _r		V _{GS} = 4.5 V, V _{DD} = 10 V, I _D = 540 mA,		5.3		
Turn-Off Delay Time	t _{d(OFF)}		$R_{G} = 10 \Omega$		21		
Fall Time	t _f				10		
Turn–On Delay Time	t _{d(ON)}	Р			9.2		ns
Rise Time	t _r		V _{GS} = -4.5 V, V _{DD} = -10 V, I _D = -430 mA,		6.5		
Turn-Off Delay Time	t _{d(OFF)}	1	$R_{G} = 10 \Omega$		29		

Drain-Source Diode Characteristics


Fall Time

Forward Diode Voltage	V _{SD}	Ν	V	I _S = 350 mA	0.77	1.2	
		Р	V_{GS} = 0 V, T _J = 25°C	I _S = -350 mA	-0.77	-1.2	V
		Ν	V 0.V T 105%C	I _S = 350 mA	0.65		v
		Р	V _{GS} = 0 V, T _J = 125°C	I _S = -350 mA	0.63		
Reverse Recovery Time	t _{RR}	Ν	$V_{GS} = 0 V,$	I _S = 350 mA	9.4		20
		Р	dIS/dt = 100 A/µs	I _S = -350 mA	14.6		ns

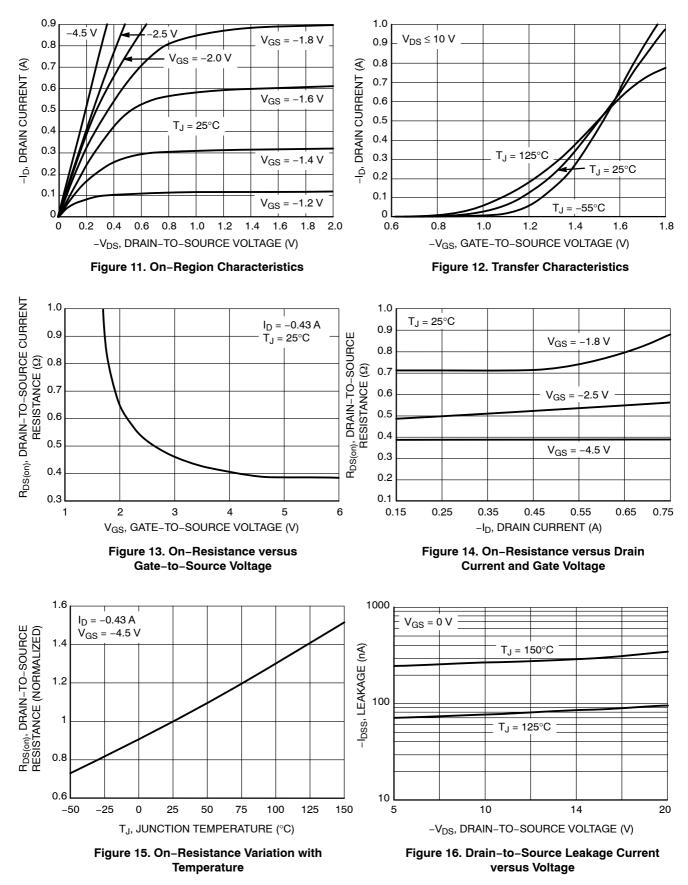
19.5


4. Switching characteristics are independent of operating junction temperatures

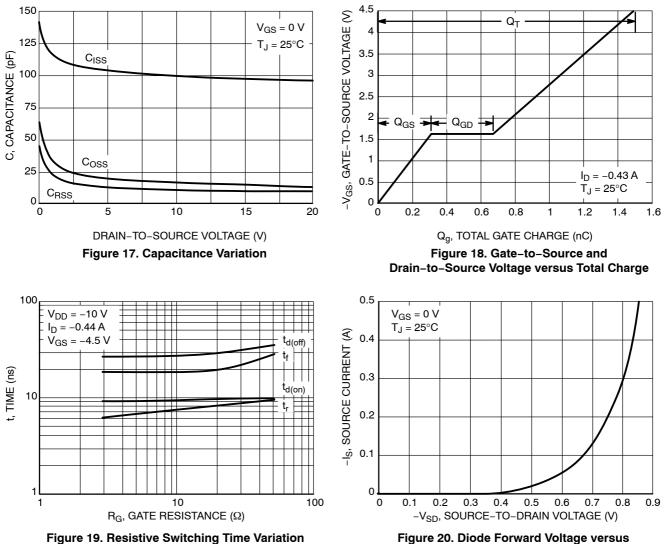
t_f

N-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

N-CHANNEL TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted)



Current


versus Gate Resistance

http://onsemi.com 5

P-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

P-CHANNEL TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted)

versus Gate Resistance

Figure 20. Diode Forward Voltage versus Current

SOT-563-6 1.60x1.20x0.55, 0.50P CASE 463A ISSUE J DATE 15 FEB 2024 NOTES: 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018. 2. ALL DIMENSION ARE IN MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM 3 THICKNESS OF BASE MATERIAL. -A D MILLIMETERS А 6X L DIM В MIN NDM. MAX. m 0.50 0.55 А 0.60 ł 6 4 PIN b 0.17 0.22 0.27 F Н REFERENCE C 0.08 0.13 0.18 2 ັບ 1 3 D 1.50 1.60 1.70 Ε 1.20 1.30 1.10 -⊨ 6X b C ⊕ 0.08∭ A B е 0.50 BSC е Н 1.50 1.60 1.70 TOP VIEW SIDE VIEW L 0.10 0.20 0.30 1.30 6X 0.45 0.30 1.80 STYLE 1: STYLE 2 STYLE 3 PIN 1. EMITTER 1 2. BASE 1 PIN 1. EMITTER 1 PIN 1. CATHODE 1 2. CATHODE 1 2. EMITTER 2 3. COLLECTOR 2 3. BASE 2 3. ANDDE/ANDDE 2 4. EMITTER 2 4. COLLECTOR 2 4. CATHODE 2 0.50 5. BASE 2 5. BASE 1 5. CATHODE 2 6. COLLECTOR 1 PITCH 6. COLLECTOR 1 6. ANDDE/ANDDE 1 RECOMMENDED MOUNTING FOOTPRINT* STYLE 6: PIN 1. CATHODE 2. ANODE FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE STYLE 5 STYLE 4: 1. CATHODE 2. CATHODE PIN 1. COLLECTOR PIN 2. COLLECTOR 3. BASE 3. ANDDE 3. CATHODE 4. ANDDE 5. CATHODE 4. CATHODE 5. CATHODE 4. EMITTER MANUAL, SOLDERRM/D. 5, COLLECTOR 6. COLLECTOR 6. CATHODE 6. CATHODE GENERIC **MARKING DIAGRAM*** STYLE 7: STYLE 8 STYLE 9 PIN 1. CATHODE PIN 1. DRAIN PIN 1. SOURCE 1 2. ANDDE 2. DRAIN 2. GATE 1 XXM. 3. CATHODE 4. CATHODE 3. GATE 4. SDURCE 5. DRAIN 3. DRAIN 2 4. SDURCE 2 5. GATE 2 1 5. ANDDE 6. CATHODE 6. DRAIN 6. DRAIN 1 XX = Specific Device Code M = Month Code = Pb-Free Package STYLE 10: STYLE 11: *This information is generic. Please refer to PIN 1. CATHODE 1 PIN 1. EMITTER 2 device data sheet for actual part marking. 2. N/C 3. CATHODE 2 2. BASE 2 3. COLLECTOR 1 Pb-Free indicator, "G" or microdot "•", may 4. ANDDE 2 EMITTER 1 4. or may not be present. Some products may BASE 5. N/C 5. not follow the Generic Marking. 6. ANDDE 1 COLLECTOR 2 6. Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON11126D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-563-6 1.60x1.20x0.55, 0.50P PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>