MOSFET - Power, Single, N-Channel, μ8FL 30 V, 44 A

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

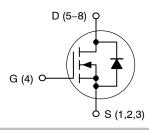
- DC-DC Converters
- Power Load Switch
- Notebook Battery Management

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Param	Symbol	Value	Unit		
Drain-to-Source Voltage	V_{DSS}	30	V		
Gate-to-Source Voltage	V_{GS}	±20	V		
Continuous Drain		T _A = 25°C	I _D	13.3	Α
Current R _{θJA} (Note 1)		T _A = 80°C		9.9	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	2.09	W
Continuous Drain		T _A = 25°C	I _D	18.2	Α
Current R _{θJA} ≤ 10 s (Note 1)		T _A = 80°C		13.6	
Power Dissipation $R_{\theta JA} \le 10 \text{ s (Note 1)}$	Steady	T _A = 25°C	P _D	3.9	W
Continuous Drain	State	T _A = 25°C	Ι _D	8.2	Α
Current R _{θJA} (Note 2)		T _A = 80°C	1	6.1	
Power Dissipation $R_{\theta JA}$ (Note 2)		T _A = 25°C	P _D	0.79	W
Continuous Drain	$T_{C} = 25^{\circ}C$ $T_{C} = 80^{\circ}C$		I _D	44	Α
Current R _{θJC} (Note 1)			1	33	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C		23.6	W
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	128	Α
Operating Junction and S	T _J , T _{stg}	–55 to +150	°C		
Source Current (Body Die	I _S	20	Α		
Drain to Source dV/dt	dV/dt	6.0	V/ns		
Single Pulse Drain-to–Source Avalanche Energy ($T_J = 25^{\circ}C$, $V_{DD} = 50$ V, $V_{GS} = 10$ V, $I_L = 25$ A_{pk} , $L = 0.1$ mH, $R_G = 25$ Ω) (Note 3)			E _{AS}	31	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T_L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	7.4 mΩ @ 10 V	44 A
	11 mΩ @ 4.5 V	44 A

N-Channel MOSFET

WDFN8 (μ8FL) CASE 511AB

Α

AYWW=

D

sd þD G [4C10 = Specific Device Code = Assembly Location

= Year WW = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFS4C10NTAG	WDFN8 (Pb-Free)	1500 / Tape & Reel
NTTFS4C10NTWG	WDFN8 (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

- 2. Surface-mounted on FR4 board using the minimum recommended pad size.
- 3. This is the absolute maximum ratings. Parts are 100% tested at $T_J = 25^{\circ}C$, $V_{GS} = 10 \text{ V}, I_L = 17 \text{ A}, E_{AS} = 14 \text{ mJ}.$

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	5.3	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	59.9	°C/W
Junction-to-Ambient - Steady State (Note 5)	$R_{\theta JA}$	157.8	°C/VV
Junction-to-Ambient - (t ≤ 10 s) (Note 4)	$R_{ heta JA}$	31.8	

- 4. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.5. Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise specified)

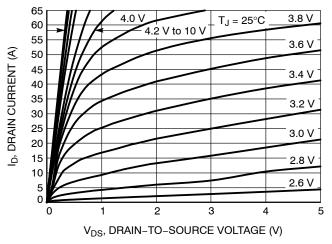
Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage (transient)	V _{(BR)DSSt}	$V_{GS} = 0 \text{ V}, I_{D(aval)} = 7.1 \text{ A},$ $T_{case} = 25^{\circ}\text{C}, t_{transient} = 100 \text{ ns}$		34			٧
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				14.5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, \qquad T_{J} = 25^{\circ}\text{C}$				1.0	
		V _{DS} = 24 V	T _J = 125°C			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 6)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$		1.3		2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		5.9	7.4	mΩ
		V _{GS} = 4.5 V	I _D = 15 A		8.8	11	
Forward Transconductance	9 _{FS}	V _{DS} = 1.5 V, I _E	_O = 15 A		43		S
Gate Resistance	R_{G}	T _A = 25°C			1.0		Ω
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				993		pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MH	z, V _{DS} = 15 V		574		
Reverse Transfer Capacitance	C _{RSS}				163		
Capacitance Ratio	C _{RSS} /C _{ISS}	V _{GS} = 0 V, V _{DS} = 15	V, f = 1 MHz		0.164		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 30 A			9.7		
Threshold Gate Charge	Q _{G(TH)}				1.5		
Gate-to-Source Charge	Q _{GS}				2.8		nC
Gate-to-Drain Charge	Q_{GD}				4.8		1
Gate Plateau Voltage	V _{GP}				3.2		V
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V; I _D = 30 A			18.6		nC

SWITCHING CHARACTERISTICS (Note 7)

- 6. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 7. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition			Тур	Max	Unit
SWITCHING CHARACTERISTICS (N	ote 7)					•	
Turn-On Delay Time	t _{d(ON)}				9.0		
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{D}$	_S = 15 V,		30		
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 15 \text{ A}, R_G = 3.0 \Omega$			14		ns
Fall Time	t _f				7.0		
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω			6.0		ns
Rise Time	t _r				25		
Turn-Off Delay Time	t _{d(OFF)}				18		
Fall Time	t _f				4.0		
DRAIN-SOURCE DIODE CHARACT	ERISTICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.80	1.1	
		I _S = 10 A T _J = 125°C			0.67		V
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dIS/dt = 100 A/ μ s, I _S = 30 A			23.3		
Charge Time	t _a				12.7		ns
Discharge Time	t _b				10.6		
Reverse Recovery Charge	Q_{BB}	1 1			8.3		nC


^{6.} Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
7. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

80

70

 $V_{DS} = 5 V$

ID, DRAIN CURRENT (A) 60 50 40 30 T_J = 125°C 20 $T_J = 25^{\circ}C$ 10 = -55°C 0 0.5 1.5 2.0 2.5 3.0 3.5 4.0 1.0 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

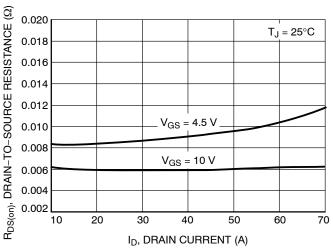
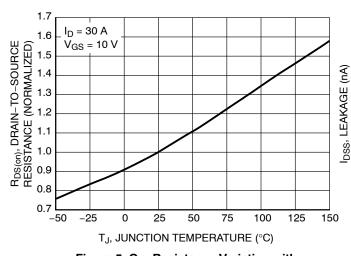



Figure 3. On-Resistance vs. V_{GS}

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

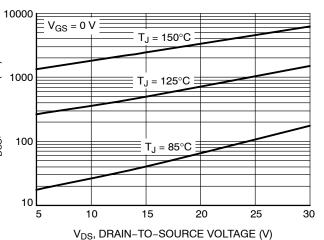


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

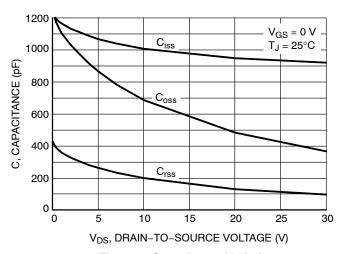


Figure 7. Capacitance Variation

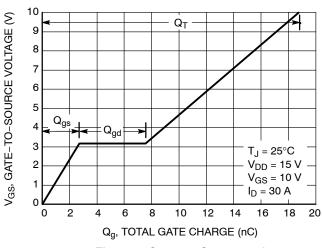


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

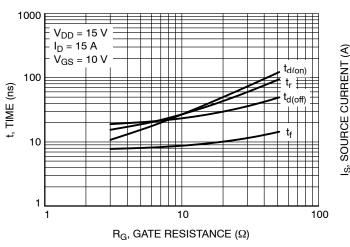


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

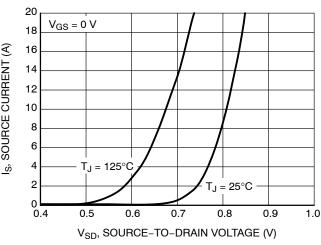


Figure 10. Diode Forward Voltage vs. Current

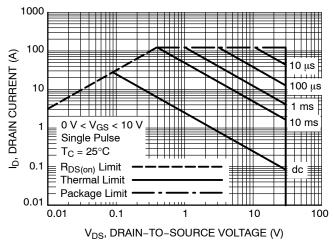


Figure 11. Maximum Rated Forward Biased Safe Operating Area

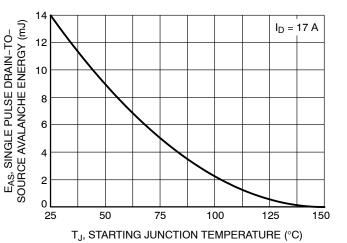


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL CHARACTERISTICS

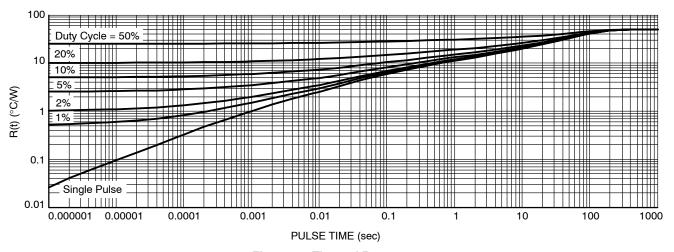


Figure 13. Thermal Response

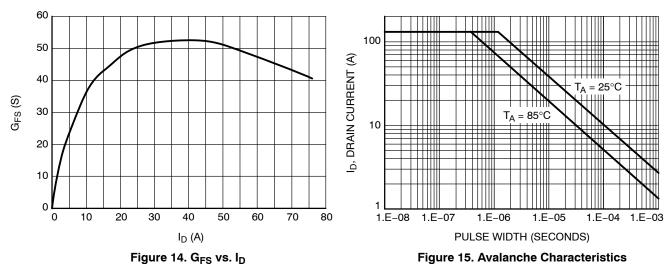
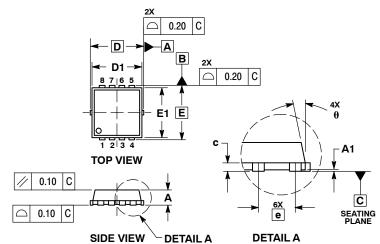
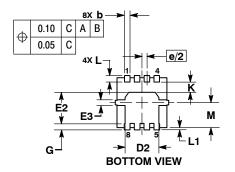


Figure 15. Avalanche Characteristics



SCALE 2:1

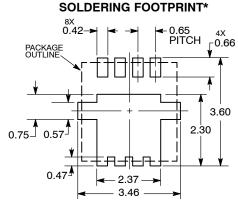
WDFN8 3.3x3.3, 0.65P CASE 511AB ISSUE D


DATE 23 APR 2012

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH
 PROTRUSIONS OR GATE BURRS.

	MILLIMETERS				INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
С	0.15	0.20	0.25	0.006	0.008	0.010	
D		3.30 BSC		0	.130 BSC		
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
E		3.30 BSC			0.130 BSC		
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
E3	0.23	0.30	0.40	0.009	0.012	0.016	
е		0.65 BSC			0.026 BS0)	
G	0.30	0.41	0.51	0.012	0.016	0.020	
K	0.65	0.80	0.95	0.026	0.032	0.037	
L	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
М	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	



GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code Α = Assembly Location

= Year = Work Week WW = Pb-Free Package

DIMENSION: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON30561E	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P		PAGE 1 OF 1	

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales