onsemi

MOSFET - Power, N-Channel, PowerTrench[®] Power Clip, Symmetric Dual ^{30 V} NTTFD4D1N03P1E

Features

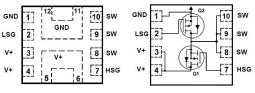
- Latest 30 V MOSFET Technology with Optimized Figure-of-Merit
- Less Junction Capacitance for High Switching Frequency Application
- Lower Q_{GD}/Q_{GS} for Shoot–Through Preventing
- Small Footprint (3.3mm x 3.3mm) for Compact Design
- These Devices are Pb-Free and are RoHS Compliant

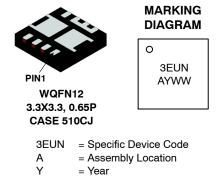
Typical Applications

- DC-DC Converters
- System Voltage Rails

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Para	neter		Symbol	Q1	Q2	Unit
Drain-to-Source Volt	age		V _{DSS}	30	30	V
Gate-to-Source Volta	age		V _{GS}	+16 -12	+16 -12	V
Continuous Drain Current R _{θJC}		$T_{C} = 25^{\circ}C$	Ι _D	54	54	А
(Note 3)	Steady	$T_C = 85^{\circ}C$		38	38	
Power Dissipation $R_{\theta JC}$ (Note 3)	State	$T_C = 25^{\circ}C$	PD	20	20	W
Continuous Drain Current R _{θJA}		$T_A = 25^{\circ}C$	Ι _D	15	15	А
(Notes 1, 3)	Steady	$T_A = 85^{\circ}C$		11	11	
Power Dissipation $R_{\theta JA}$ (Notes 1, 3)	State	$T_A = 25^{\circ}C$	PD	1.7	1.7	W
Continuous Drain		$T_A = 25^{\circ}C$	Ι _D	12	12	А
Current R _{θJA} (Notes 2, 3)	Steady	$T_A = 85^{\circ}C$		8	8	
Power Dissipation $R_{\theta JA}$ (Notes 2, 3)	State	$T_A = 25^{\circ}C$	PD	1.0	1.0	W
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	408	408	А
Energy Q1: I _L = 7 A _{pk} , L = 3 I	Single Pulse Drain-to-Source Avalanche Energy Q1: $I_L = 7 A_{pk}$, L = 3 mH (Note 4) Q2: $I_L = 7 A_{pk}$, L = 3 mH (Note 4)			74	74	mJ
Operating Junction and	d Storage	Temperature	T _J , T _{stg}	–55 to + 150		°C
Lead Temperature for Purposes (1/8" from			ΤL	26	60	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using a 1 in² pad size, 2 oz. Cu pad.
- 2. Surface-mounted on FR4 board using minimum pad size, 2 oz. Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. Actual continuous current will be limited by thermal & electro-mechanical application board design. R_{θJC} is determined by the user's board design.
 Q1 100% LIS tested at L = 3 mH LAS = 7 A
- Q1 100% UIS tested at L = 3 mH, IAS = 7 A.
 Q2 100% UIS tested at L = 3 mH, IAS = 7 A.

5. This device is Class 1B ESD HBM Rating.

FET	V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
0	30 V	$4.3~\mathrm{m}\Omega$ @ 10 V	54 A
Q1	30 V	$5.4~\mathrm{m}\Omega$ @ $4.5~\mathrm{V}$	54 A
Q2	30 V	$3.5~\mathrm{m}\Omega$ @ 10 V	54 A
QZ	30 V	$4.5~\mathrm{m}\Omega$ @ $4.5~\mathrm{V}$	54 A

ELECTRICAL CONNECTION

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFD4D1N03P1E	WQFN12 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Q1 Max	Q2 Max	Unit
Junction-to-Case - Steady State (Notes 1, 3)	$R_{ ext{ heta}JC}$	6.0	6.0	°C/W
Junction-to-Ambient - Steady State (Notes 1, 3)	$R_{ hetaJA}$	70	70	
Junction-to-Ambient - Steady State (Notes 2, 3)	R _{θJA}	120	120	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition	FET	Min	Тур	Max	Unit
OFF CHARACTERISTICS							

Drain-to-Source Breakdown	V _{(BR)DSS}	V_{GS} = 0 V, I _D =	$V_{GS} = 0 V, I_D = 1 mA$		30			V
Voltage		V_{GS} = 0 V, I _D =	$V_{GS} = 0 V, I_D = 1 mA$		30			v
Drain-to-Source Breakdown	V _{(BR)DSS} /	I _D = 1 mA, ref to	o 25°C	Q1		17		mV/°C
Voltage Temperature Coefficient	IJ	$I_D = 1 \text{ mA}$, ref to $25^{\circ}C$		Q2		17		mv/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$	Q1			1.0	
	V _{DS} = 24 V	$v_{DS} = 24 v$, = 24 V	Q2			1.0	μA
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = +1	6 V / –12 V	Q1			±100	-
		V _{DS} = 0 V, V _{GS} = +16	6 V / –12 V	Q2			±100	nA

ON CHARACTERISTICS (Note 6)

Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = 270 μ A	Q1	1.2	1.61	2.2	V	
		V_{GS} = V_{DS} , I_D = 270 μ A	Q2	1.2	1.64	2.2	v	
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	$I_D = 270 \ \mu A$, ref to $25^{\circ}C$	Q1		4.5			
		$I_D = 270 \ \mu A$, ref to $25^{\circ}C$	Q2		4.5		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 10 V, I _D = 10 A	Q1		3.8	4.3		
		V_{GS} = 4.5 V, I _D = 10 A			4.7	5.4		
		V_{GS} = 10 V, I _D = 10 A	Q2		2.9	3.5	mΩ	
		V_{GS} = 4.5 V, I _D = 10 A			3.9	4.5		
Forward Transconductance	9 FS	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 10 \text{ A}$	Q1		52		_	
		$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 10 \text{ A}$	Q2		57		S	
Gate-Resistance	R _G	$T_A = 25^{\circ}C$	Q1		0.8		0	
			Q2		0.8		Ω	

CHARGES AND CAPACITANCES

Input Capacitance	C _{ISS}		Q1	1103	~ Г
			Q2	972	pF
Output Capacitance	C _{OSS}		Q1	335	рF
		V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz	Q2	309	Ч
Reverse Transfer Capacitance	C _{RSS}		Q1	19	~ Г
			Q2	25	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 6. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$.

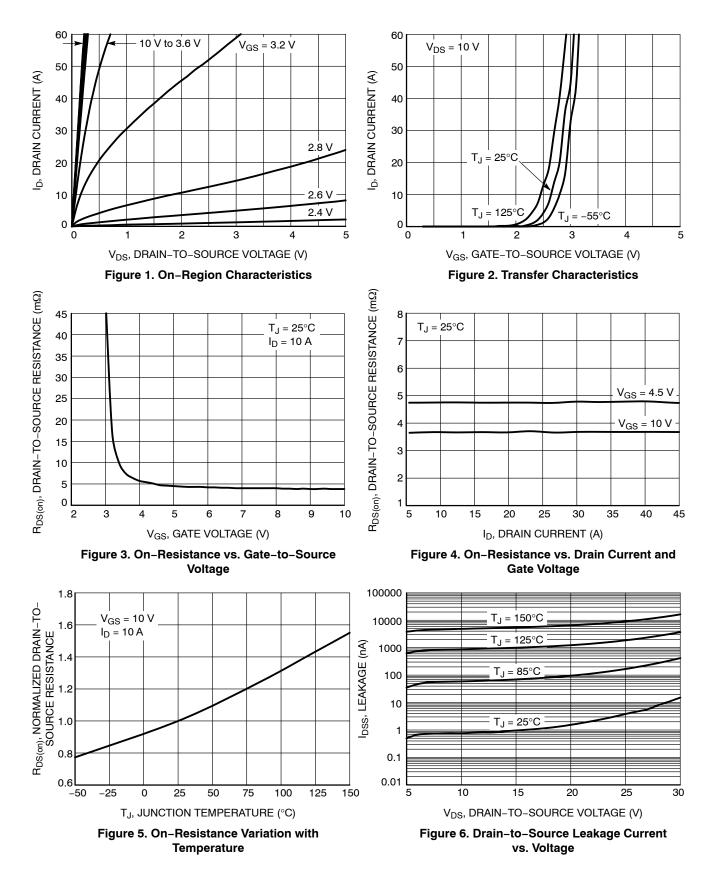
7. Switching characteristics are independent of operating junction temperatures.

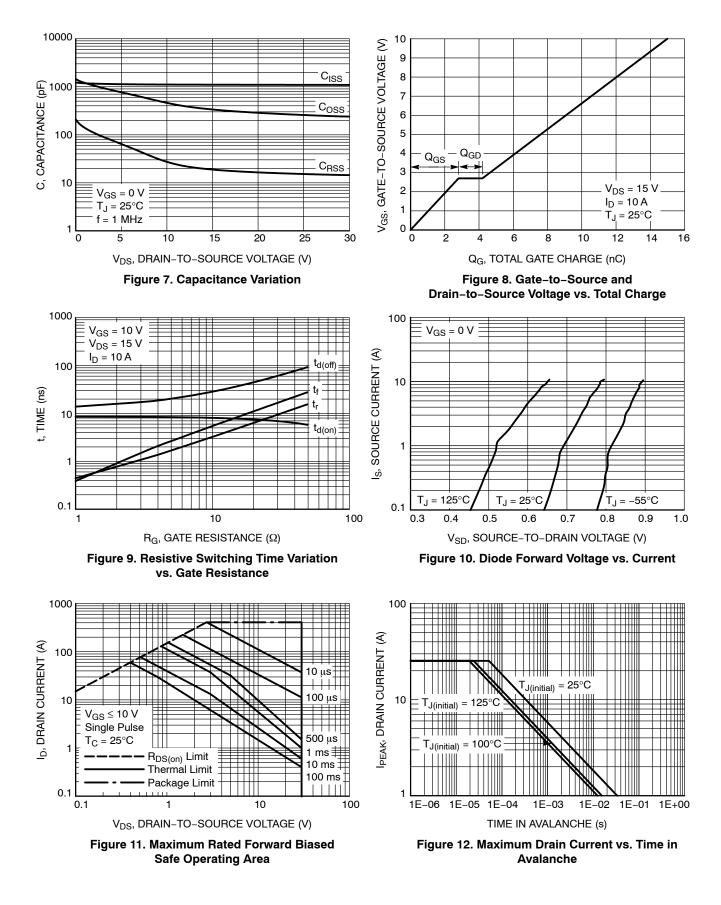
ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Condition	FET	Min	Тур	Max	Unit			
CHARGES AND CAPACITANCES										
Total Gate Charge	Q _{G(TOT)}		Q1		6.7		nC			
			Q2		6.3		no			
Gate-to-Drain Charge	Q _{GD}	$Q_{1}: V_{GS} = 4.5 V, V_{DS} = 15 V; I_{D} = 10 A$	Q1		1.4		nC			
		Q2		1.4		nc				
Gate-to-Source Charge	Q _{GS}		Q1		2.8					
			Q2		2.5		nC			
Total Gate Charge	Q _{G(TOT)}	Q1: V_{GS} = 10 V, V_{DS} = 15 V; I_{D} = 10 A	Q1		15					
		Q2: V_{GS} = 10 V, V_{DS} = 15 V; I_D = 10 A	Q2		14		nC			

SWITCHING CHARACTERISTICS, V_{GS} = 4.5 V (Note 7)

Turn-On Delay Time	t _{d(ON)}		Q1	12	20
			Q2	11	ns
Rise Time	t _r		Q1	7.5	20
		$\begin{array}{c} {\sf V}_{GS} = 4.5 \; {\sf V} \\ {\sf Q1:} \; {\sf I}_{D} = 10 \; {\sf A}, \; {\sf V}_{DD} = 15 \; {\sf V}, \; {\sf R}_{G} = 6 \; \Omega \\ {\sf Q2:} \; {\sf I}_{D} = 10 \; {\sf A}, \; {\sf V}_{DD} = 15 \; {\sf V}, \; {\sf R}_{G} = 6 \; \Omega \end{array}$	Q2	5.2	ns
Turn-Off Delay Time	t _{d(OFF)}	Q2: $I_D = 10 \text{ A}, V_{DD} = 15 \text{ V}, H_G = 0 \Omega$	Q1	16	20
			Q2	14.3	ns
Fall Time	t _f		Q1	5.2	20
		Q2	4.9	ns	


SWITCHING CHARACTERISTICS, VGS = 10 V (Note 7)


Turn-On Delay Time	t _{d(ON)}		Q1	8.3	20
			Q2	7.5	ns
Rise Time	t _r		Q1	2.0	20
		V_{GS} = 10 V Q1: I _D = 10 A, V _{DD} = 15 V, R _G = 6 Ω	Q2	1.8	ns
Turn-Off Delay Time	t _{d(OFF)}	Q1. ID = 10 A, V_{DD} = 15 V, R_{G} = 0 Ω Q2: I _D = 10 A, V_{DD} = 15 V, R_{G} = 6 Ω	Q1	22	20
			Q2	20	ns
Fall Time	t _f		Q1	3.2	20
			Q2	3.0	ns

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V _{SD}	$v_{GS} = 0 v, 0$	$T_J = 25^{\circ}C$	Q1	0.80	1.2	
		I _S = 10 A	T _J = 125°C		0.65		V
		V _{GS} = 0 V,	$T_J = 25^{\circ}C$	Q2	0.79	1.2	v
		V _{GS} = 0 V, I _S = 10 A	T _J = 125°C		0.65		
Reverse Recovery Time	t _{RR}		Q1	23		20	
		V _{GS} = 0 V, V _{DD} = Q1: I _S = 10 A, dI _S /dt =	= 15 V	Q2	22		ns
Reverse Recovery Charge	Q _{RR}	Q2: $I_S = 10 \text{ A}, dI_S/dt = Q2: I_S = 10 \text{ A}, dI_S = 10 \text{ A}, dI_S = 10 \text{ A}, dI_S = 10 $	Q1	9.4			
				Q2	9.0		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 6. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$. 7. Switching characteristics are independent of operating junction temperatures.

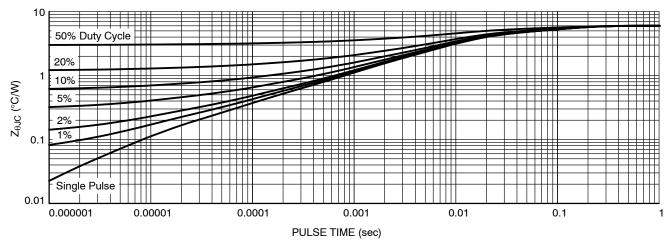
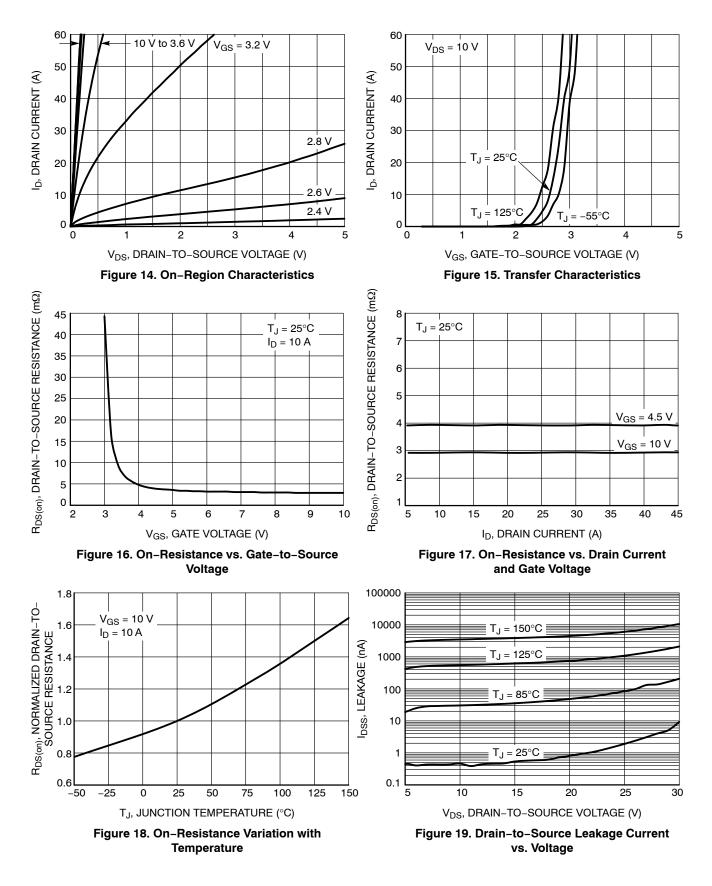
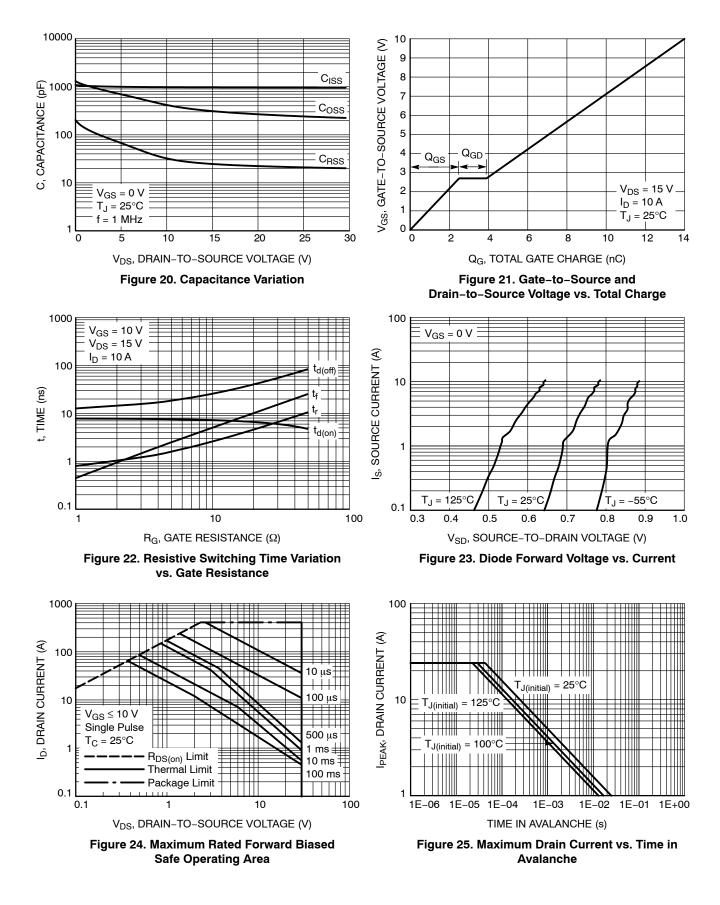




Figure 13. Thermal Characteristics

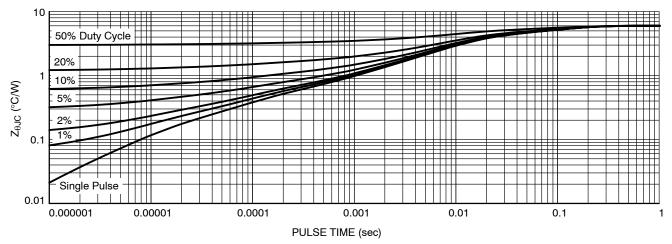
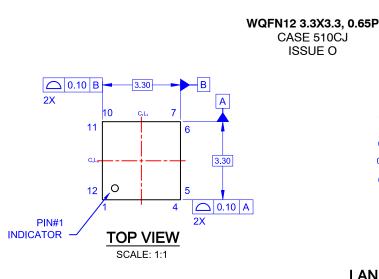
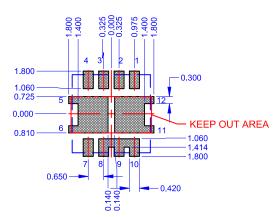



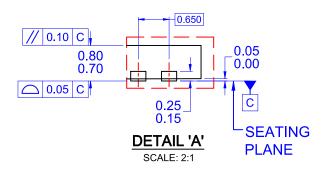
Figure 26. Thermal Characteristics

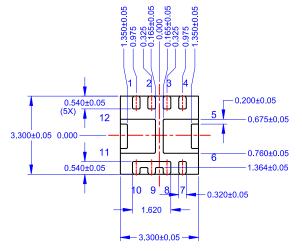
PACKAGE DIMENSIONS



C.L.

FRONT VIEW


SCALE: 1:1


SEE DETAIL "A"

LAND PATTERN RECOMMENDATION

BOTTOM VIEW

SCALE: 1:1

NOTES: UNLESS OTHERWISE SPECIFIED

- A) DRAWING DOES NOT FULLY CONFORM TO JEDEC REGISTRATION MO-220, VARIATION WEEC-1
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** product

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative