

MOSFET - Power, N-Channel, SUPERFET® III

800 V, 450 m Ω , 11 A

NTPF450N80S3Z

Description

800 V SUPERFET III MOSFET is **onsemi**'s high performance MOSFET family offering 800 V breakdown voltage.

New 800 V SUPERFET III MOSFET which is optimized for primary switch of flyback converter, enables lower switching losses and case temperature without sacrificing EMI performance thanks to its optimized design. In addition, internal Zener Diode significantly improves ESD capability.

This new family of 800 V SUPERFET III MOSFET enables to make more efficient, compact, cooler and more robust applications because of its remarkable performance in switching power applications such as Laptop adapter, Audio, Lighting, ATX power and industrial power supplies.

Features

- Typ. $R_{DS(on)} = 380 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Qg = 19.3 nC)
- Low Stored Energy in Output Capacitance (Eoss = 2.2 µJ @ 400 V)
- 100% Avalanche Tested
- ESD Improved Capability with Zener Diode
- RoHS Compliant

Applications

- Adapters / Chargers
- LED Lighting
- AUX Power
- Audio
- Industrial Power

V _{(BR)DSS}	V _{(BR)DSS} R _{DS(ON)} MAX	
800 V	450 m Ω @ V _{GS} = 10 V	11 A

N-CHANNEL MOSFET

TO-220 FULLPAK CASE 221D-03

MARKING DIAGRAM

T450N80S3Z

= Specific Device Code

YWW

= Assembly Location

Y VV VV ZZ = Data Code (Year & Week)

= Assembly Lot

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Value	Unit		
V _{DSS}	Drain-to-Source Voltage		800	V	
V _{GS}	Gate-to-Source Voltage	DC	±20	V	
		AC (f > 1 Hz)	±30	V	
I _D	Drain Current	Continuous (T _C = 25°C)	11*	А	
		Continuous (T _C = 100°C)	7*	А	
I _{DM}	Drain Current	Prain Current Pulsed (Note 1)		Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		32	mJ	
I _{AS}	Avalanche Current (Note 2)		1.55	Α	
E _{AR}	Repetitive Avalanche Energy (Note 1)		0.295	mJ	
dv/dt	MOSFET dv/dt		100	V/ns	
	Peak Diode Recovery dv/dt (Note 3)		10	V/ns	
P _D	Power Dissipation	T _C = 25°C	29.5	W	
		Derate above 25°C	0.236	W/°C	
T _J , T _{stg}	Operating Junction and Storage Temperature Range		-55 to +150	°C	
TL	Lead Temperature for Soldering Purposes (1/8" from Case for 10 seconds)		260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. *Drain current limited by maximum junction temperature
1. Repetitive rating: pulse–width limited by maximum junction temperature.
2. $I_{AS} = 1.55 \text{ A}$, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}\text{C}$.
3. $I_{SD} \le 2.75 \text{ A}$, di/dt $\le 200 \text{ A}/\mu\text{s}$, $V_{DD} \le 400 \text{ V}$, starting $T_J = 25^{\circ}\text{C}$.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ hetaJC}$	Thermal Resistance, Junction-to-Case, Max.	4.23	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NTPF450N80S3Z	T450N80S3Z	TO-220F	Tube	N/A	N/A	1000 Units

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS		•	•	•	•
BV _{DSS} Drain-to-Source Breakdov	Drain-to-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 1 mA, T _J = 25°C	800	_	_	V
		V _{GS} = 0 V, I _D = 1 mA, T _J = 150°C	900	_	_	V
$\Delta BV_{DSS}/\Delta T_{J}$	Drain-to-Source Breakdown Voltage Temperature Coefficient	I _D = 1 mA, Reference to 25°C	-	1.1	-	V/°C
I _{DSS} Zer	Zero Gate Voltage Drain Current	V _{DS} = 800 V, V _{GS} = 0 V	_	_	1	μΑ
		V _{DS} = 640 V, T _C = 125°C –		0.8	_	1
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	_	_	±1	μΑ
ON CHARACTE	RISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 0.24$ mA	2.2	-	3.8	V
R _{DS(on)}	Static Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 5.5 A	_	380	450	mΩ
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 5.5 A	_	11.8	-	S
DYNAMIC CHA	RACTERISTICS		•		•	•
C _{iss}	Input Capacitance	$V_D = 400 \text{ V}, V_{GS} = 0 \text{ V},$	_	885	_	pF
C _{oss}	Output Capacitance	f = 250 kHz	_	15	_	
C _{oss(eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V	_	188	_	
C _{oss(er.)}	Energy Related Output Capacitance		_	27	_	
Q _{g(tot)}	Total Gate Charge at 10 V	V _{DS} = 400 V, I _D = 5.5 A, V _{GS} = 10 V	_	19.3	_	nC
Q _{gs}	Gate-to-Source Charge	(Note 4)	_	4.2	_	
Q _{gd}	Gate-to-Drain "Miller" Charge		_	6.6	_	
ESR	Equivalent Series Resistance	f = 1 MHz	_	4.0	_	Ω
SWITCHING CH	IARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, I_D = 5.5 \text{ A},$	_	13.3	_	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V, R}_{G} = 4.7 \Omega$ (Note 4)	_	6.7	-	
t _{d(off)}	Turn-Off Delay Time		_	44.3	-	
t _f	Turn-Off Fall Time		_	4.6	-	
SOURCE-TO-D	PRAIN DIODE CHARACTERISTICS		•	•	•	•
I _S	Maximum Continuous Source-to-Drain Diode Forward Current		_	_	11	Α
I _{SM}	Maximum Pulsed Source-to-Drain Dio	de Forward Current	-	_	25	Α
V _{SD}	Source-to-Drain Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 5.5 A	-	-	1.2	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, I_{SD} = 2.75 \text{ A}, di_F/$	-	170	-	ns
Q _{rr}	Reverse Recovery Charge	dt = 100 A/μs	_	1.5	-	μС

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature typical characteristics.

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On Resistance vs. Drain Current

Figure 4. Diode Forward Voltage vs. Current

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

TYPICAL CHARACTERISTICS

Figure 7. Normalized BV_{DSS} vs. Temperature

Figure 9. Safe Operating Area

Figure 10. E_{oss} vs. Drain-to-Source Voltage

Figure 11. Transient Thermal Impedance

Figure 12. Gate Charge Test Circuit & Waveform

Figure 13. Resistive Switching Test Circuit & Waveforms

Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

MECHANICAL CASE OUTLINE

SCALE 1:1

3. CATHODE

TO-220 FULLPAK CASE 221D-03 ISSUE K

DATE 27 FEB 2009

0

AYWW

xxxxxxG

AKA

Rectifier

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH
- 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03.

	INCHES		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	
Α	0.617	0.635	15.67	16.12	
В	0.392	0.419	9.96	10.63	
C	0.177	0.193	4.50	4.90	
D	0.024	0.039	0.60	1.00	
F	0.116	0.129	2.95	3.28	
G	0.100	BSC	2.54 BSC		
Н	0.118	0.135	3.00	3.43	
J	0.018	0.025	0.45	0.63	
K	0.503	0.541	12.78	13.73	
L	0.048	0.058	1.23	1.47	
N	0.200	0.200 BSC		BSC	
Q	0.122	0.138	3.10	3.50	
R	0.099	0.117	2.51	2.96	
S	0.092	0.113	2.34	2.87	
U	0.239	0.271	6.06	6.88	

MARKING DIAGRAMS

STYLE 1: PIN 1. GATE STYLE 2: PIN 1. BASE STYLE 3: PIN 1. ANODE 2. COLLECTOR 3. EMITTER 2. DRAIN 2. 2. CATHODE 3. ANODE 3. SOURCE STYLE 6: PIN 1. MT 1 2. MT 2 3. GATE STYLE 4: PIN 1. CATHODE STYLE 5: PIN 1. CATHODE 2. ANODE 3. GATE ANODE

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales