Onsemi

MOSFET – Power, N-Channel, SUPERFET[®] III

800 V, 450 mΩ, 11 A

NTPF450N80S3Z

Description

800 V SUPERFET III MOSFET is onsemi's high performance MOSFET family offering 800 V breakdown voltage.

New 800 V SUPERFET III MOSFET which is optimized for primary switch of flyback converter, enables lower switching losses and case temperature without sacrificing EMI performance thanks to its optimized design. In addition, internal Zener Diode significantly improves ESD capability.

This new family of 800 V SUPERFET III MOSFET enables to make more efficient, compact, cooler and more robust applications because of its remarkable performance in switching power applications such as Laptop adapter, Audio, Lighting, ATX power and industrial power supplies.

Features

- Typ. $R_{DS(on)} = 380 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Qg = 19.3 nC)
- Low Stored Energy in Output Capacitance (Eoss = $2.2 \,\mu J \,(200 \,\text{V})$)
- 100% Avalanche Tested
- ESD Improved Capability with Zener Diode
- RoHS Compliant

Applications

- Adapters / Chargers
- LED Lighting
- AUX Power
- Audio
- Industrial Power

V _{(BR)DSS}	V _{(BR)DSS} R _{DS(ON)} MAX	
800 V	450 m Ω @ V _{GS} = 10 V	11 A

N-CHANNEL MOSFET

CASE 221D-03

MARKING DIAGRAM

ORDERING INFORMATION

А YWW

ΖZ

See detailed ordering and shipping information on page 2 of this data sheet.

Symbol	Para	Value	Unit V		
V _{DSS}	Drain-to-Source Voltage	800			
V _{GS}	Gate-to-Source Voltage	DC	±20	V	
		AC (f > 1 Hz)	±30	V	
I _D	Drain Current	Continuous (T _C = 25°C)	11*	А	
		Continuous (T _C = 100°C)	7*	А	
I _{DM}	Drain Current	Pulsed (Note 1)	25*	А	
E _{AS}	Single Pulsed Avalanche Energy (Note	32	mJ		
I _{AS}	Avalanche Current (Note 2)		1.55	А	
E _{AR}	Repetitive Avalanche Energy (Note 1)		0.295	mJ	
dv/dt	MOSFET dv/dt	100	V/ns		
	Peak Diode Recovery dv/dt (Note 3)		10	V/ns	
PD	Power Dissipation	$T_{\rm C} = 25^{\circ}{\rm C}$	29.5	W	
		Derate above 25°C	0.236	W/°C	
T _J , T _{stg}	Operating Junction and Storage Temperature Range		-55 to +150	°C	
ΤL	Lead Temperature for Soldering Purposes (1/8" from Case for 10 seconds)		260	°C	

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
*Drain current limited by maximum junction temperature
1. Repetitive rating: pulse-width limited by maximum junction temperature.
2. I_{AS} = 1.55 A, R_G = 25 Ω, starting T_J = 25°C.
3. I_{SD} ≤ 2.75 A, di/dt ≤ 200 A/µs, V_{DD} ≤ 400 V, starting T_J = 25°C.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.	4.23	°C/W
R _{0JA}	Thermal Resistance, Junction-to-Ambient, Max.	62.5	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NTPF450N80S3Z	T450N80S3Z	TO-220F	Tube	N/A	N/A	1000 Units

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
FF CHARACT	ERISTICS					•
BV _{DSS}	Drain-to-Source Breakdown Voltage	V_{GS} = 0 V, I_D = 1 mA, T_J = 25°C	800	-	-	V
		$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 1 \text{ mA}, \text{ T}_{J} = 150^{\circ}\text{C}$	900	-	-	V
$\Delta BV_{DSS}/\Delta T_{J}$	Drain-to-Source Breakdown Voltage Temperature Coefficient	$I_D = 1 \text{ mA}$, Reference to 25°C	-	1.1	-	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	1	μΑ
		$V_{DS} = 640 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$	-	0.8	-	
I _{GSS}	Gate-to-Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±1	μΑ
ON CHARACTE	RISTICS		•			
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 0.24$ mA	2.2	-	3.8	V
R _{DS(on)}	Static Drain-to-Source On Resistance	V_{GS} = 10 V, I _D = 5.5 A	-	380	450	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 20 V, I _D = 5.5 A	-	11.8	-	S
YNAMIC CHA	RACTERISTICS		•			
C _{iss}	Input Capacitance	$V_{\rm D} = 400 \text{ V}, \text{ V}_{\rm GS} = 0 \text{ V},$	-	885	-	pF
C _{oss}	Output Capacitance	f = 250 kHz	-	15	-	
C _{oss(eff.)}	Effective Output Capacitance	$V_{DS} = 0 \text{ V to } 400 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	188	-	
C _{oss(er.)}	Energy Related Output Capacitance		-	27	-	-
Q _{g(tot)}	Total Gate Charge at 10 V	$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$	-	19.3	-	nC
Q _{gs}	Gate-to-Source Charge	(Note 4)	_	4.2	-	1
Q _{gd}	Gate-to-Drain "Miller" Charge		_	6.6	-	
ESR	Equivalent Series Resistance	f = 1 MHz	-	4.0	_	Ω
WITCHING CH	IARACTERISTICS		•			
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, I_D = 5.5 \text{ A},$	-	13.3	-	ns
t _r	Turn-On Rise Time	V _{GS} = 10 V, R _G = 4.7 Ω (Note 4)	-	6.7	-	7
t _{d(off)}	Turn-Off Delay Time		-	44.3	-	1
t _f	Turn-Off Fall Time		_	4.6	_	1

۱ _S	Maximum Continuous Source-to-Drain Diode Forward Current			-	11	А
I _{SM}	Maximum Pulsed Source-to-Drain Diode Forward Current			-	25	А
V _{SD}	Source-to-Drain Diode Forward Volt- age	V _{GS} = 0 V, I _{SD} = 5.5 A	-	-	1.2	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_{SD} = 2.75 A, di_{F}/$	-	170	-	ns
Q _{rr}	Reverse Recovery Charge	dt = 100 A/µs	-	1.5	-	μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Essentially independent of operating temperature typical characteristics.

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 11. Transient Thermal Impedance

Figure 12. Gate Charge Test Circuit & Waveform

Figure 13. Resistive Switching Test Circuit & Waveforms

Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

DOCUMENT NUMBER:	98ASB42514B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220 FULLPAK		PAGE 1 OF 1		
ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

© Semiconductor Components Industries, LLC, 2019

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>