ON Semiconductor

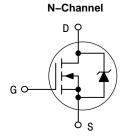
Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Power MOSFET 75 Amps, 30 Volts

N-Channel TO-220 and D²PAK

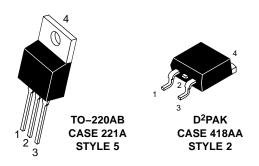

This 20 V_{GS} gate drive vertical Power MOSFET is a general purpose part that provides the "best of design" available today in a low cost power package. This power MOSFET is designed to withstand high energy in the avalanche and commutation modes. The Drain–to–Source Diode has a fast response with soft recovery.

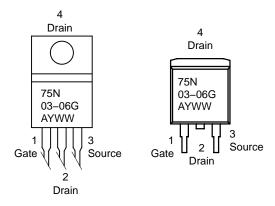
Features

- Ultra-Low R_{DS(on)}, Single Base, Advanced Technology
- SPICE Parameters Available
- Diode is Characterized for Use in Bridge Circuits
- I_{DSS} and V_{DS(on)} Specified at Elevated Temperatures
- High Avalanche Energy Capability
- ESD JEDAC Rated HBM Class 1, MM Class B, CDM Class 0
- Pb-Free Packages are Available

Typical Applications

- Power Supplies
- Inductive Loads
- PWM Motor Controls
- Replaces MTP1306 and MTB1306




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
30 V	$5.3~\mathrm{m}\Omega$ @ $10~\mathrm{V}$	75 A

MARKING DIAGRAMS & PIN ASSIGNMENTS

 N75N03-06
 = Device Code

 A
 = Assembly Location

 Y
 = Year

 WW
 = Work Week

 G
 = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	30	Vdc
Drain-to-Gate Voltage (RGS = 10 MΩ)	V_{DGB}	30	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	±20	Vdc
Non-repetitive (tp ≤ 10 ms)	V _{GS}	±24	Vdc
Drain Current - Continuous @ $T_C = 25^{\circ}C$ - Continuous @ $T_C = 100^{\circ}C$ - Single Pulse (tp \leq 10 μ s)	I _D I _D I _{DM}	75 59 225	Adc Apk
Total Power Dissipation @ T _C = 25°C Derate above 25°C Total Power Dissipation @ T _A = 25°C (Note 1)	P _D	125 1.0 2.5	W W/°C W
Operating and Storage Temperature Range	T _J and T _{stg}	-55 to 150	°C
Single Pulse Drain–to–Source Avalanche Energy – Starting T_J = 25°C (V_{DD} = 38 Vdc, V_{GS} = 10 Vdc, L = 1 mH, I_L (pk) = 55 A, V_{DS} = 40 Vdc)	E _{AS}	1500	mJ
Thermal Resistance - Junction-to-Case - Junction-to-Ambient - Junction-to-Ambient (Note 1)	R _{θJC} R _{θJA} R _{θJA}	1.0 62.5 50	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8 in from case for 10 seconds	TL	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. When surface mounted to an FR4 board using the minimum recommended pad size.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTP75N03-06	TO-220	50 Units / Rail
NTP75N03-06G	TO-220 (Pb-Free)	50 Units / Rail
NTB75N03-06	D ² PAK	50 Units / Rail
NTB75N03-06G	D ² PAK (Pb-Free)	50 Units / Rail
NTB75N03-06T4	D ² PAK	800 Units / Tape & Reel
NTB75N03-06T4G	D ² PAK (Pb-Free)	800 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

1	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS					_	
Drain – Source Breakdown Voltov ($V_{GS} = 0$ Vdc, $I_D = 250 \mu Adc$) Temperature Coefficient (Nega	V _{(BR)DSS}	30	_ _57	- -	Vdc mV°C	
Zero Gate Voltage Drain Curre ($V_{DS} = 30 \text{ Vdc}$, $V_{GS} = 0 \text{ Vdc}$) ($V_{DS} = 30 \text{ Vdc}$, $V_{GS} = 0 \text{ Vdc}$, $V_{GS} = 0 \text{ Vdc}$)		I _{DSS}	- -	- -	1.0 10	μAdc
Gate-Body Leakage Current	$(V_{GS} = \pm 20 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$	I _{GSS}	_	-	±100	nAdc
ON CHARACTERISTICS (Not	e 2)					
Gate Threshold Voltage (Note $(V_{DS} = V_{GS}, I_D = 250 \mu Adc)$ Threshold Temperature Coeffic	,	V _{GS(th)}	1.0	1.6 -6	2.0	Vdc mV°C
Static Drain-to-Source On-Re (V _{GS} = 10 Vdc, I _D = 37.5 Adc)	esistance (Note 2)	R _{DS(on)}	_	5.3	6.5	mΩ
Static Drain-to-Source On Re $(V_{GS} = 10 \text{ Vdc}, I_D = 75 \text{ Adc})$ $(V_{GS} = 10 \text{ Vdc}, I_D = 37.5 \text{ Adc},$	V _{DS(on)}	- -	0.53 0.35	0.68 0.50	Vdc	
Forward Transconductance (N	otes 2 & 4) (V _{DS} = 3 Vdc, I _D = 20 Adc)	9FS	_	58	-	Mhos
DYNAMIC CHARACTERISTIC	S (Note 4)					
Input Capacitance		C _{iss}	_	4398	5635	pF
Output Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0, \\ f = 1.0 \text{ MHz})$	C _{oss}	_	1160	1894	
Transfer Capacitance	,	C_{rss}	_	317	430	
SWITCHING CHARACTERIST	FICS (Notes 3 and 4)					
Turn-On Delay Time		t _{d(on)}	_	16	30	ns
Rise Time	$(V_{GS} = 5.0 \text{ Vdc}, V_{DD} = 20 \text{ Vdc}, I_{D} = 75 \text{ Adc},$	t _r	_	130	200	
Turn-Off Delay Time	$R_G = 4.7 \Omega$) (Note 2)	$t_{d(off)}$	_	65	110	
Fall Time		t _f	-	105	175	
Gate Charge	(V _{GS} = 5.0 Vdc,	Q_{T}	-	57	75	nC
	I _D = 75 Adc, V _{DS} = 24 Vdc) (Note 2)	Q ₁	_	11	15	
	V _{DS} = 24 VdC) (Note 2)	Q_2	_	34	50	
SOURCE-DRAIN DIODE CHA	ARACTERISTICS					
Forward On-Voltage	$(I_S = 75 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 75 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$ (Note 2)	V_{SD}	-	1.19 1.09	1.25 -	Vdc
Reverse Recovery Time	(I _S = 75 Adc, V _{GS} = 0 Vdc	t _{rr}	_	37	-	ns
(Note 4)		ta	_	20	_	
Reverse Recovery Stored	dl _S /dt = 100 A/μs) (Note 2)	t _b	_	17	_	μС
Charge (Note 4)		Q _{RR}	-	0.023	_]

- Pulse Test: Pulse Width ≤ 300 μS, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.
 From characterization test data.

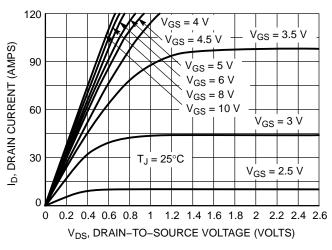


Figure 1. On-Region Characteristics

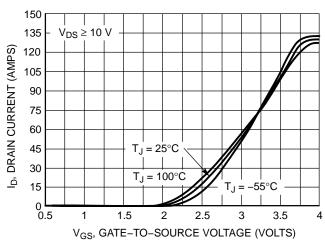


Figure 2. Transfer Characteristics

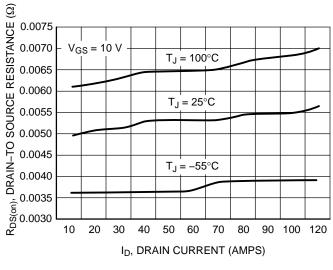


Figure 3. On-Resistance vs. Drain Current and **Temperature**

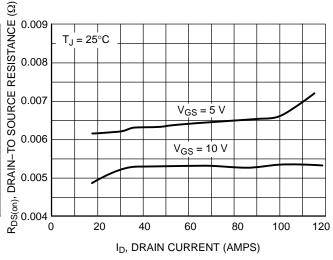


Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

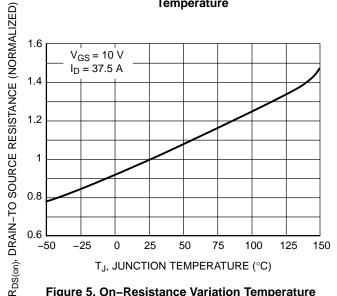


Figure 5. On-Resistance Variation Temperature

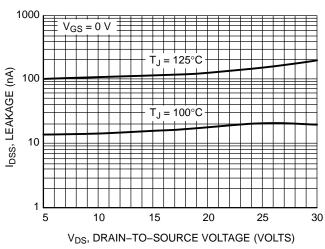


Figure 6. Drain-to-Source Leakage Current vs. Voltage

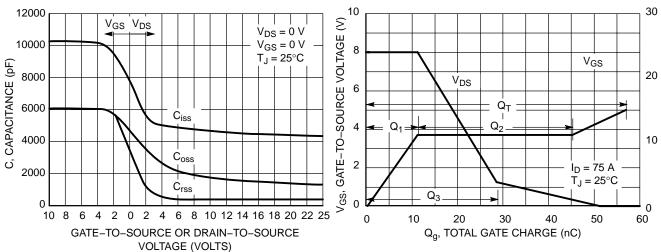


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

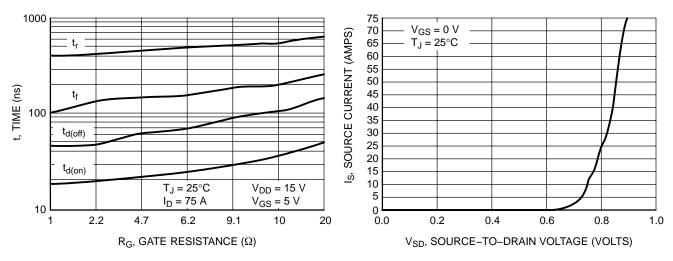


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

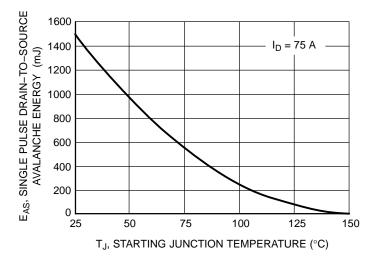
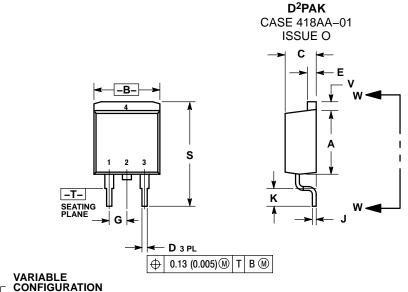
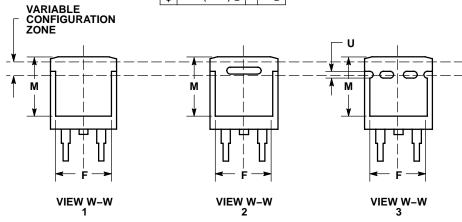
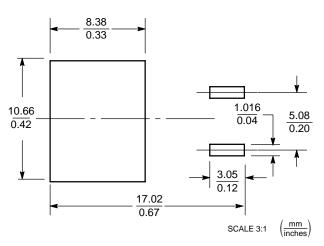



Figure 11. Maximum Avalanche Energy vs. Starting Junction Temperature

PACKAGE DIMENSIONS



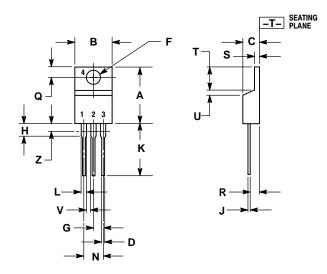
NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.83
D	0.020	0.036	0.51	0.92
E	0.045	0.055	1.14	1.40
F	0.310		7.87	
G	0.100 BSC		2.54	BSC
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
M	0.280		7.11	
S	0.575	0.625	14.60	15.88
V	0.045	0.055	1.14	1.40

- STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

SOLDERING FOOTPRINT*



^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TO-220 THREE-LEAD TO-220AB

CASE 221A-09 ISSUE AA

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14 5M 1982
- Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 5:

- PIN 1. GATE 2. DRAIN
 - 3. SOURCE
 - 4. DRAIN

ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082–1312 USA
Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada
Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.