Onsemi

MOSFET – Single P-Channel, Small Signal, SOT-1123, 1.0 x 0.6 mm -20 V, -200 mA

NTNUS3171PZ

Features

- Single P–Channel MOSFET
- Offers a Low R_{DS(on)} Solution in the Ultra Small 1.0 x 0.6 mm Package
- 1.5 V Gate Voltage Rating
- Ultra Thin Profile (< 0.5 mm) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics.
- This is a Pb–Free Device

Applications

- High Side Switch
- High Speed Interfacing
- Optimized for Power Management in Ultra Portable Equipment

MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

• Optimized for Power Management in Ultra Portable Equipment							
MAXIMUM RATINGS (T _J = 25°C unless otherwise specified)							
Para	meter		Symbol	Value	Unit	2	
Drain-to-Source Voltag	je		V _{DSS}	-20	(V)	2	
Gate-to-Source Voltag	e		V _{GS}	±8	V	O.	
Continuous Drain	Steady	T _A = 25°C		-150	K]	
Current (Note 1)	State	T _A = 85°C	ΙD	-110	mA		
	t ≤ 5 s	T _A = 25°C	2.2	-200			
Power Dissipation	Steady	ol F	SE	-125]	
(Note 1)	State	T _A = 25°C	PD		mW		
	t ≤ 5 s			-200			
Pulsed Drain Current	\$	t _p = 10 μs	I _{DM}	-600	mA		
Operating Junction and Storage Temperature		T _J ,	–55 to 150	°C			
			T _{STG}	150			
Source Current (Body Diode) (Note 2)		۱ _S	-200	mA			
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		TL	260	°C			
						-	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu.
- 2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D Max
	3.5 Ω @ –4.5 V	
–20 V	4.0 Ω @ –2.5 V	0.00.4
	5.5 Ω @ –1.8 V	–0.20 A
	7.0 Ω @ –1.5 V	

SOT-1123

CASE 524AA

5

MARKING DIAGRAM

Specific Device Code (Rotated 90° Clockwise)

P-Channel MOSFET

> D 0 3

ORDERING INFORMATION

S 🖒 2

Device	Package	Shipping [†]
NTNUS3171PZT5G	SOT-1123 (Pb-Free)	8000/Tape & Reel

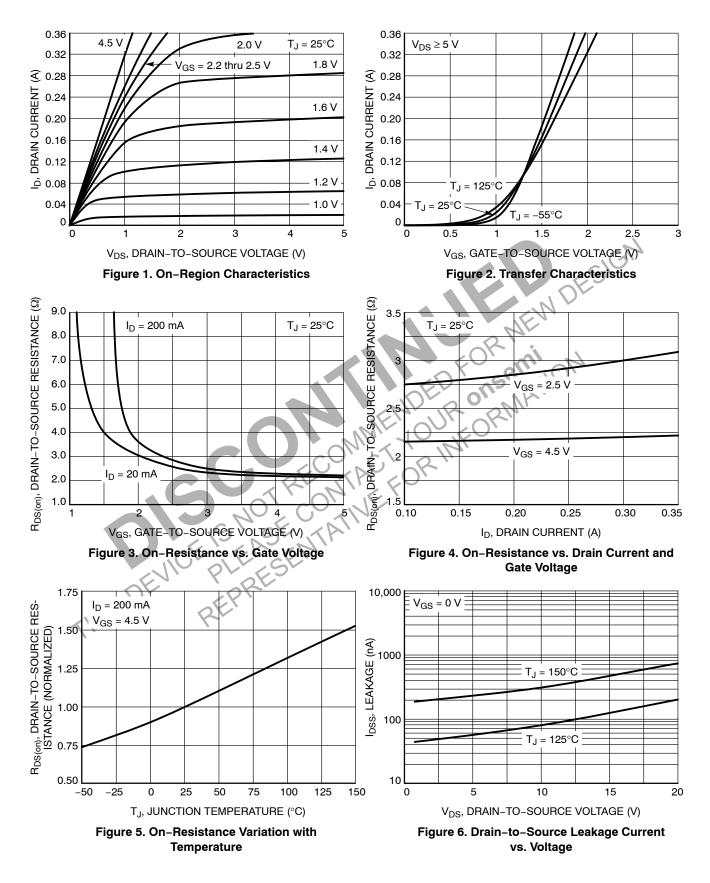
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NTNUS3171PZ

THERMAL RESISTANCE RATINGS

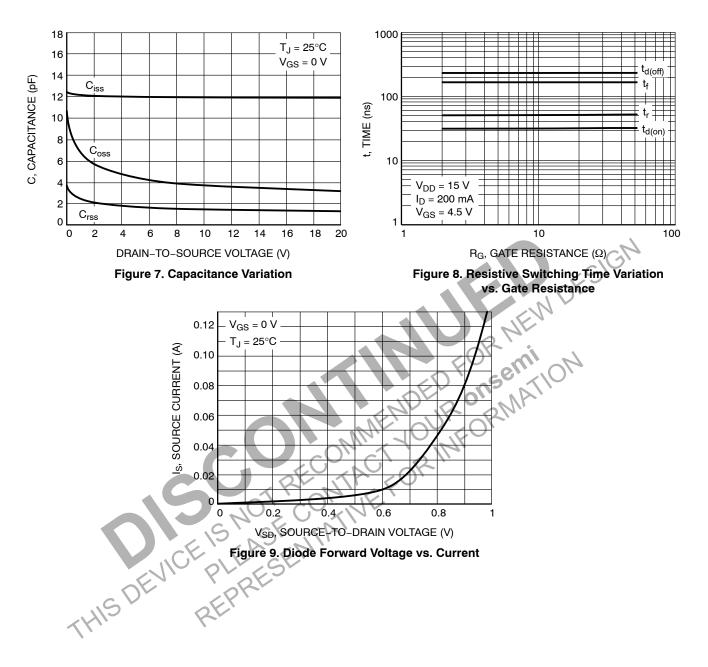
Parameter	Symbol	Мах	Unit
Junction-to-Ambient – Steady State (Note 3)	$R_{\theta JA}$	1000	°C/W
Junction-to-Ambient – t = 5 s (Note 3)	$R_{ hetaJA}$	600	

3. Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu.

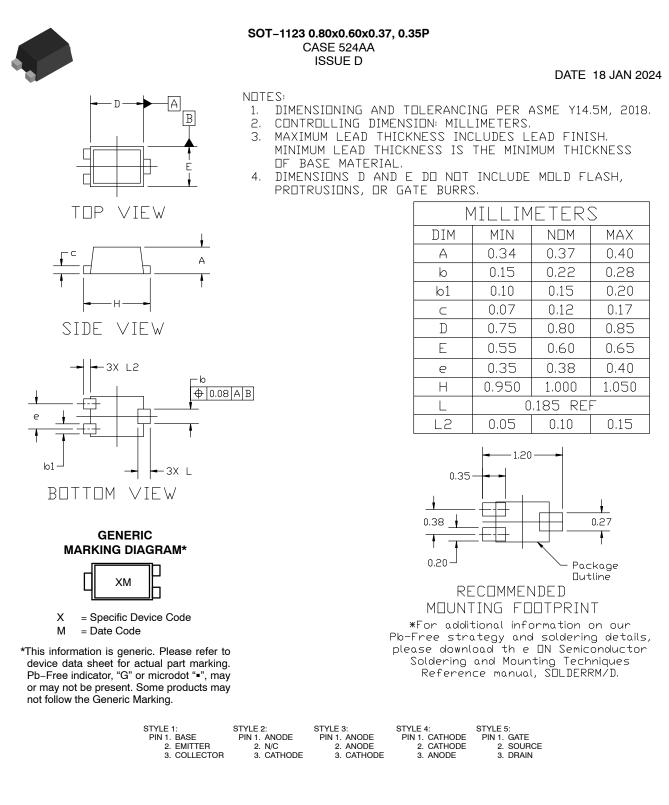

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Conditio	on	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS}~=~0$ V, $I_{D}=-250~\mu A$		-20			V
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = -5.0 V	$T_J = 25^{\circ}C$			-50	
		V_{GS} = 0 V, V_{DS} = -5.0 V	$T_J = 85^{\circ}C$			-100	nA
		V_{GS} = 0 V, V_{DS} = -16 V	T _J = 25°C			-200	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = :	<u>±</u> 5.0 V			±100	nA
ON CHARACTERISTICS (Note 4)					20	\sim	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -2$	250 μΑ	-0.4	+0.7	-1.0	V
Drain-to-Source On Resistance	R _{DS(ON)}	$V_{GS} = -4.5 \text{ V}, I_D = -$	-100 mA	SU.	2.0	3.5	
		$V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -2.5 \text{ V}$	-50 mA		2.6	4.0	
		V _{GS} = -1.8 V, I _D = -	-20 mA		3.4	5.5	Ω
		V _{GS} = -1.5 V, I _D = -	10 mA	15	4.0	7.0	
		V _{GS} = -1.2 V, I _D = -	-1.0 mA	7	6.0		
Forward Transconductance	9FS	V _{DS} = -5.0 V, I _D = -	125 mA		0.26		S
Source-Drain Diode Voltage	V _{SD}	$V_{GS} = 0 V, 1_{S} = -20$	00 mA	-0.5		-1.4	V
CHARGES, CAPACITANCES AND GATE R	ESISTANCE						
Input Capacitance	C _{ISS}	TH FOU			13		
Output Capacitance	C _{OSS}	f = 1 MHz, V _{GS} = 0 V V _{DS} = -15 V			3.4		pF
Reverse Transfer Capacitance	C _{RSS}				1.6		
Total Gate Charge	Q _{G(TOT)}				0.7		
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 200 mA			0.1		nC
Gate-to-Source Charge	Q _{GS}				0.2		
Gate-to-Drain Charge	Q _{GD}			0.1			
SWITCHING CHARACTERISTICS, $V_{GS} = 4$.	5 V (Note 4)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = -4.5 V, V_{DD} = -15 V, I_{D} = -200 mA, R_{G} = 2.0 Ω			30		ns
Rise Time	t _r				56		
Turn–Off Delay Time	t _{d(OFF)}				196		
Fall Time	t _f				145		

4. Switching characteristics are independent of operating junction temperatures


NTNUS3171PZ

TYPICAL CHARACTERISTICS



NTNUS3171PZ

TYPICAL CHARACTERISTICS

DOCUMENT NUMBER:	98AON23134D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-1123 0.80x0.60x0.37, 0.35P		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>