MOSFET - Single, N-Channel, Small Signal, SOT-883, (XDFN3), 1.0 x 0.6 x 0.4 mm 12 V, 758 mA

Features

- Single N-Channel MOSFET
- Ultra Low Profile SOT–883 (XDFN3) 1.0 x 0.6 x 0.4 mm for Extremely Thin Environments such as Portable Electronics
- Low R_{DS(on)} Solution in Ultra Small 1.0 x 0.6 mm Package
- 1.8 V Gate Drive
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Load Switch
- High Speed Interfacing
- Level Shift and Translate
- Optimized for Power Management in Ultra Portable Solutions

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

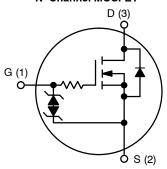
Parameter			Symbol	Value	Units
Drain-to-Source Voltage			V_{DSS}	12	V
Gate-to-Source Voltage			V_{GS}	<u>±</u> 8	٧
Continuous Drain	Steady	T _A = 25°C	I _D	758	mA
Current (Note 1)	State	T _A = 85°C		547	
	t ≤ 5 s	T _A = 25°C		898	
Power Dissipa- tion (Note 1)	Steady State	T _A = 25°C	P _D	156	mW
	t ≤ 5 s	T _A = 25°C		219	
Pulsed Drain Current $t_p = 10 \mu s$			I _{DM}	2.2	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode) (Note 2)			Is	223	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Units
Junction-to-Ambient – Steady State (Note 1)	$R_{\theta JA}$	800	°C/W
Junction-to-Ambient – $t \le 5$ s (Note 1)	$R_{\theta JA}$	570	

Surface Mounted on FR4 Board using the minimum recommended pad size, (or 2 mm²), 1 oz Cu.


ON Semiconductor®

www.onsemi.com

MOSFET

V _{(BR)DSS}	V _{(BR)DSS} R _{DS(on)} MAX	
	0.160 Ω @ 4.5 V	
	0.175 Ω @ 3.7 V	
12 V	0.185 Ω @ 3.3 V	758 mA
	0.230 Ω @ 2.5 V	
	0.440 Ω @ 1.8 V	

N-Channel MOSFET

MARKING DIAGRAM

SOT-883 (XDFN3) CASE 506CB

AC = Specific Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTNS3C68NZT5G	SOT-883 (Pb-Free)	8000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS				•			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A}$		12			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I_D = 250 μ A, ref to 25°C			11		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 9.6 V				1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±10 V				±10	μΑ
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, I _D = 250 μA	0.4		1.0	V
Negative Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				1.1		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _D = 100 mA			0.120	0.160	Ω
		V _{GS} = 3.7 \	/, I _D = 75 mA		0.130	0.175	
		V _{GS} = 3.3 \	/, I _D = 75 mA		0.135	0.185	
		V _{GS} = 2.5 \	/, I _D = 50 mA		0.167	0.230	
		V _{GS} = 1.8 V, I _D = 20 mA			0.250	0.440	
		V _{GS} = 1.5 \	/, I _D = 10 mA		0.44		
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 100 mA			0.8		S
Source-Drain Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 100 mA			0.68	1.1	V
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}				67		pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V _{DS} =	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,} $ $V_{DS} = 9.6 \text{ V}$		19		
Reverse Transfer Capacitance	C _{RSS}	VDS = 3.3 V			8.5		
Total Gate Charge	$Q_{G(TOT)}$				1.8		nC
Threshold Gate Charge	Q _{G(TH)}	V_{GS} = 4.5 V, V_{DS} = 9.6 V, I_{D} = 100 mA			0.1		
Gate-to-Source Charge	Q_{GS}				0.3		
Gate-to-Drain Charge	Q_{GD}				0.4		
SWITCHING CHARACTERISTICS, VG	S = 4.5 V (Note 3)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DD} = 9.6 V, I_{D} = 100 mA, R_{G} = 2 Ω			10.7		ns
Rise Time	t _r				19.4		
Turn-Off Delay Time	t _{d(OFF)}				710		
Fall Time	t _f				310		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

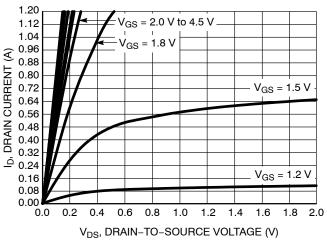


Figure 1. On-Region Characteristics

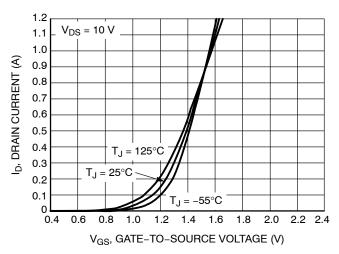


Figure 2. Transfer Characteristics

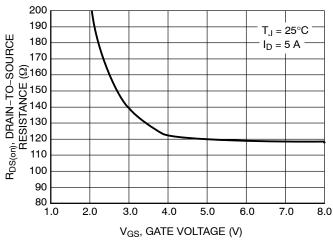


Figure 3. On-Resistance vs. Gate-to-Source Voltage

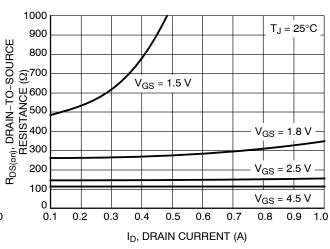


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

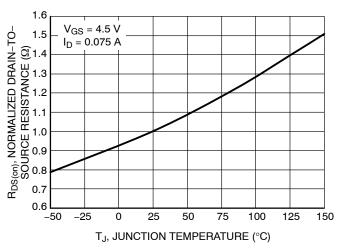


Figure 5. On–Resistance Variation with Temperature

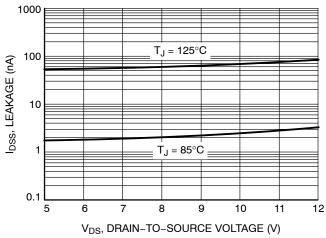
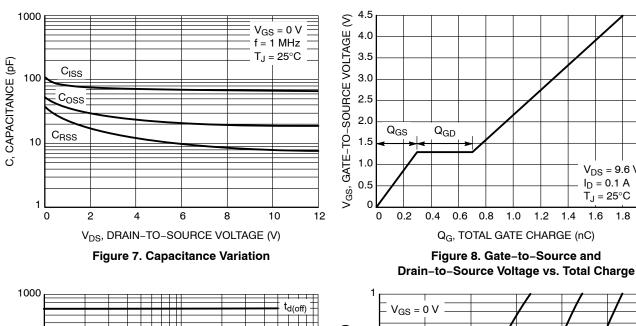



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

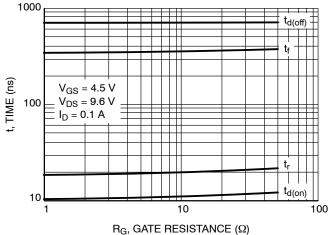
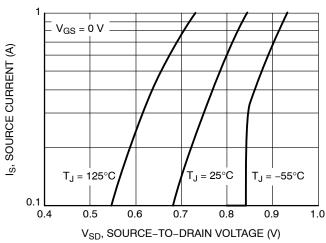



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

V_{DS} = 9.6 V $I_D = 0.1 A$

 $T_{,J} = 25^{\circ}C$

1.6

1.2

Figure 10. Diode Forward Voltage vs. Current

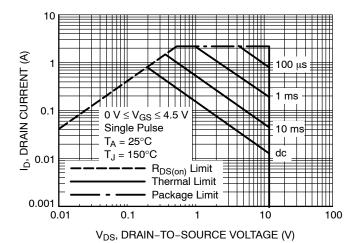


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

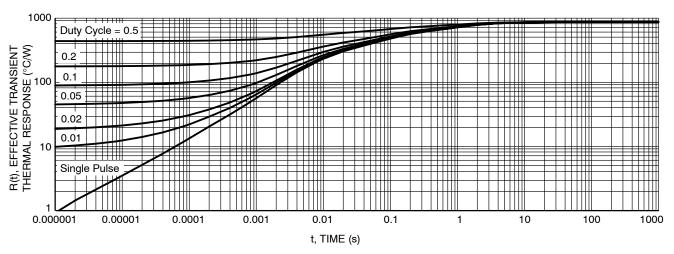
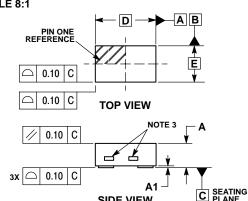


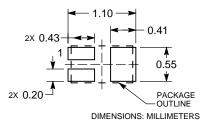
Figure 12. FET Thermal Response



SOT-883 (XDFN3), 1.0x0.6, 0.35P


CASE 506CB ISSUE A

DATE 30 MAR 2012



SIDE VIEW

RECOMMENDED SOLDER FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. EXPOSED COPPER ALLOWED AS SHOWN.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.340	0.440			
A1	0.000	0.030			
b	0.075	0.200			
D	0.950	1.075			
D2	0.620 BSC				
е	0.350 BSC				
Е	0.550	0.675			
E2	0.425	0.550			
L	0.170	0.300			

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

DOCUMENT NUMBER:	98AON65407E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-883 (XDFN3), 1.0X0.6, 0.35P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales