MOSFET - Single, P-Channel, Small Signal, SOT-883 (XDFN3), 1.0 x 0.6 x 0.4 mm

-20 V, -281 mA

Features

- Single P-Channel MOSFET
- Ultra Low Profile SOT–883 (XDFN3) 1.0 x 0.6 x 0.4 mm for Extremely Thin Environments Such as Portable Electronics
- Low R_{DS(on)} Solution in the Ultra Small 1.0 x 0.6 mm Package
- 1.5 V Gate Drive
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

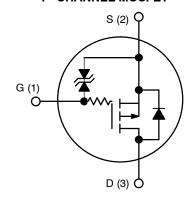
- High Side Switch
- High Speed Interfacing
- Optimized for Power Management in Ultra Portable Solutions

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	-20	V
Gate-to-Source Voltage			V _{GS}	±8	V
Continuous Drain	Steady State	, ,		-281	mA
Current (Note 1)	State	T _A = 85°C		-202	
	t ≤ 5 s	T _A = 25°C		-332	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P_{D}	155	mW
	t ≤ 5 s			218	
Pulsed Drain Current	t _p = 10 μs		I _{DM}	-842	mA
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode) (Note 2)			Is	-130	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu.
- 2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D Max
	1.3 Ω @ -4.5 V	
-20 V	2.0 Ω @ -2.5 V	–281 mA
-20 V	3.4 Ω @ -1.8 V	-201 IIIA
	4.5 Ω @ -1.5 V	

P-CHANNEL MOSFET

MARKING DIAGRAM

SOT-883 (XDFN3) CASE 506CB

65 = Specific Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTNS3A65PZT5G	SOT-883 (Pb-Free)	8000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit	
Junction-to-Ambient - Steady State (Note 3)		804	°C ///	
Junction-to-Ambient - t ≤ 5 s (Note 3)	$R_{\theta JA}$	574	°C/W	

^{3.} Surface–mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = -250 μA, ref to 25°C			11		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V},$ $V_{DS} = -20 \text{ V}$	T _J = 25°C			-1	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±	5 V			±10	μΑ
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -250 \mu A$		-0.4		-1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.2		mV/°C
Drain-to-Source On Resistance		$V_{GS} = -4.5 \text{ V}, I_D = -200 \text{ mA}$			0.9	1.3	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -100 \text{ mA}$			1.3	2.0	
	R _{DS(on)}	$V_{GS} = -1.8 \text{ V}, I_D = -50 \text{ mA}$			1.8	3.4	
		V_{GS} = -1.5 V, I_D = -10 mA			2.3	4.5	Ω
Forward Transconductance	9FS	$V_{DS} = -5 \text{ V}, I_D = -200 \text{ mA}$			0.58		S
Source-Drain Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = -100 \text{ mA}$			-0.8	-1.2	V
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, freq = 1 MHz, V _{DS} = -10 V			44		
Output Capacitance	C _{OSS}				6.7		pF
Reverse Transfer Capacitance	C _{RSS}				5.5]
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V};$ $I_{D} = -200 \text{ mA}$			1.1		
Threshold Gate Charge	Q _{G(TH)}				0.1		nC
Gate-to-Source Charge	Q_{GS}				0.2		
Gate-to-Drain Charge	Q_{GD}				0.2		
SWITCHING CHARACTERISTICS, V _{GS}	= 4.5 V (Note 4	1)					
Turn-On Delay Time	t _{d(ON)}				18		
Rise Time	t _r	V_{GS} = -4.5 V, V_{DD} = -10 V, I_D = -200 mA, R_G = 2 Ω			32]
Turn-Off Delay Time	t _{d(OFF)}				178		ns
Fall Time	t _f				84		

^{4.} Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

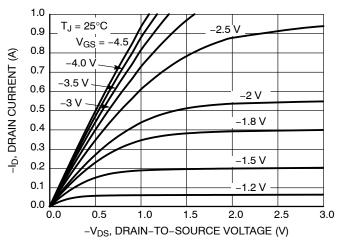


Figure 1. On-Region Characteristics

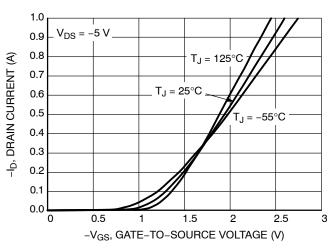


Figure 2. Transfer Characteristics

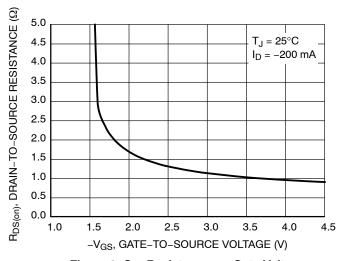


Figure 3. On-Resistance vs. Gate Voltage

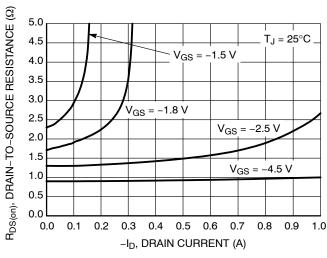


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

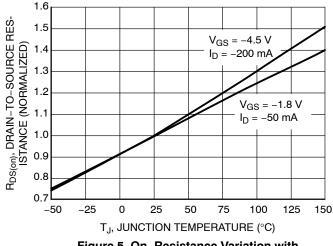


Figure 5. On–Resistance Variation with Temperature

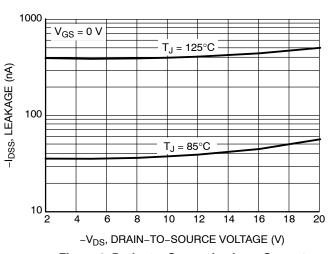


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

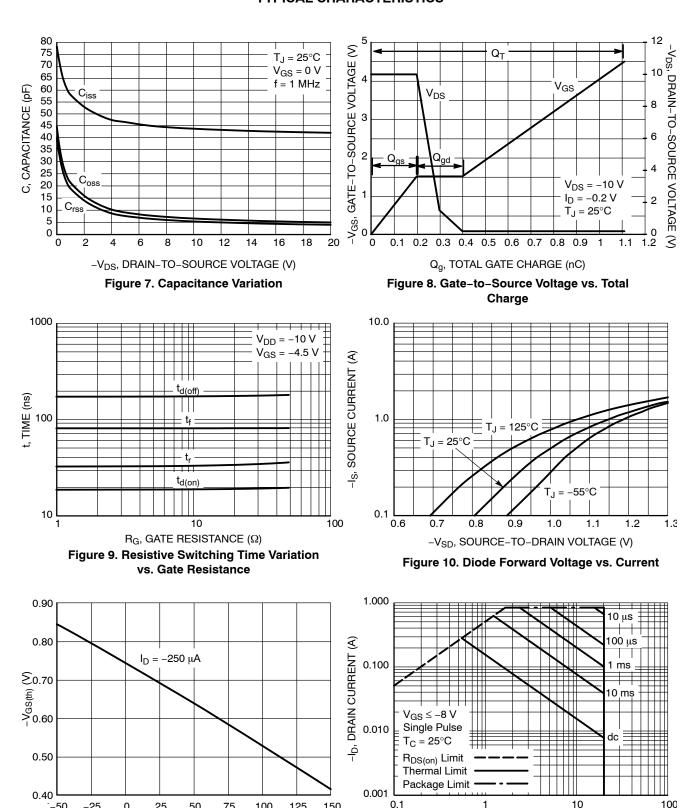


Figure 12. Maximum Rated Forward Biased **Safe Operating Area**

-V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

-50

-25

0

25

50

T.J, STARTING JUNCTION TEMPERATURE (°C)

Figure 11. Threshold Voltage

75

100

125

150

TYPICAL CHARACTERISTICS

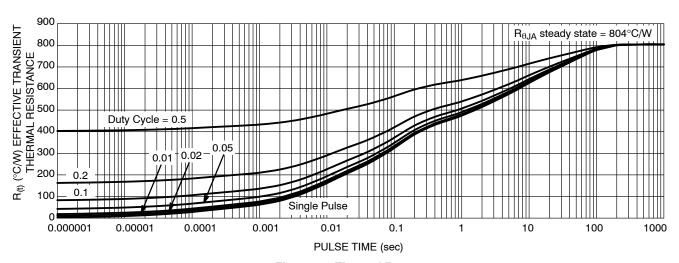
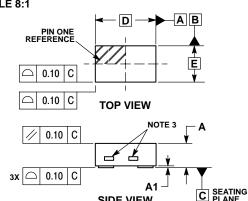
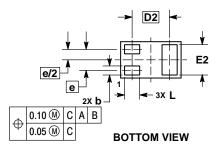


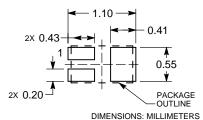
Figure 13. Thermal Response



SOT-883 (XDFN3), 1.0x0.6, 0.35P


CASE 506CB ISSUE A

DATE 30 MAR 2012



SIDE VIEW

RECOMMENDED SOLDER FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. EXPOSED COPPER ALLOWED AS SHOWN.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.340	0.440			
A1	0.000	0.030			
b	0.075	0.200			
D	0.950	1.075			
D2	0.620 BSC				
е	0.350 BSC				
Е	0.550	0.675			
E2	0.425	0.550			
L	0.170	0.300			

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

DOCUMENT NUMBER:	98AON65407E	N65407E Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-883 (XDFN3), 1.0X0.6, 0.35P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales