
MOSFET - Power, Single N-Channel 40 V, 5.3 mΩ, 71 A

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- LFPAK4 Package, Industry Standard
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

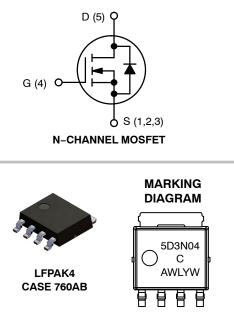
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

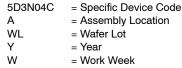
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	3.0	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	40	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.


3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.



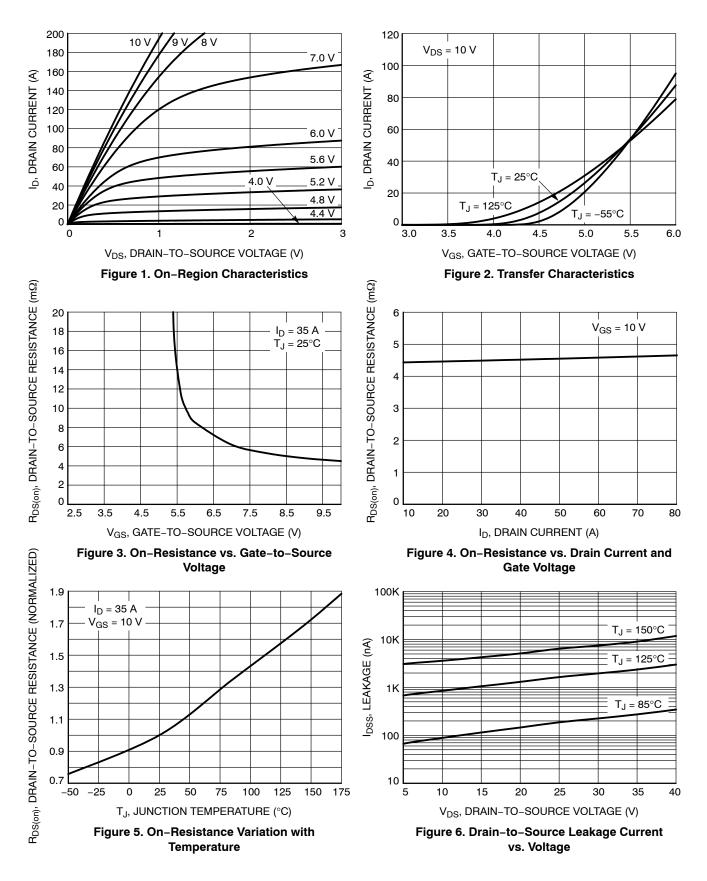
ON Semiconductor®

www.onsemi.com

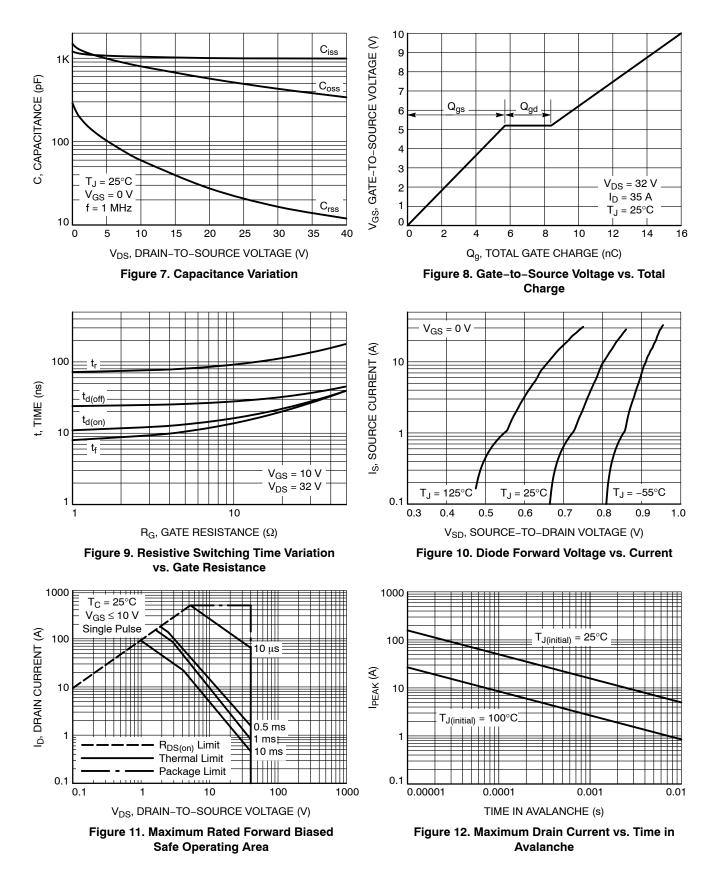
V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	5.3 m Ω @ 10 V	71 A

ORDERING INFORMATION

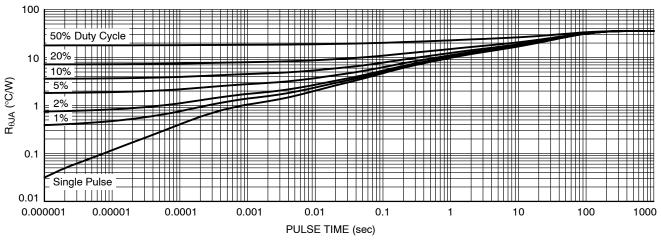
See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
$\begin{array}{ c c c c c c } \hline Drain-to-Source Breakdown Voltage Temperature Coefficient $V_{IBIJDSS}' \\ T_J = 25 \ C & 10 \\ T_J = 25 \ C & 250 \\ \hline T_J = 125^\circ C & 250 \\ \hline T_J = 10^\circ C & 100 \\ \hline T_J = 125^\circ C & 250 \\ \hline T_J = 10^\circ C & 100 \\ \hline T_J = 125^\circ C & 100 \\ \hline T_J = 10^\circ C & 100 \\ \hline T_J = $	OFF CHARACTERISTICS							•
$\begin{array}{ c c c c c c c c c } \hline \mbox{TJ} & \mbox{TT} & \mb$	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		40			V
$\begin{tabular}{ c c c c c } \hline V_{0S} = 40 \ V & \hline T_{J} = 125^\circ C & 0 & 250 \\ \hline T_{J} = 125^\circ C & 0 & 0 & 0 & 0 \\ \hline T_{J} = 125^\circ C & 0 & 0 & 0 & 0 \\ \hline T_{J} = 125^\circ C & 0 & 0 & 0 & 0 \\ \hline T_{J} = 125^\circ C & 0 & 0 & 0 & 0 \\ \hline T_{J} = 125^\circ C & 0 & 0 & 0 & 0 \\ \hline T_{J} = 125^\circ C & 0 & 0 & 0 & 0 \\ \hline T_{J} = 125^\circ C & 0 & 0 & 0 & 0 \\ \hline T_{J} = 125^\circ C & 0 & 0 & 0 & 0 \\ \hline T_{J} = 125^\circ C & 0 & 0 & 0 & 0 \\ \hline T_{J} = 125^\circ C & 0 & 0 & 0 & 0 \\ \hline T_{J} = 125^\circ C & 0 & 0 & 0 & 0 \\ \hline T_{J} = 125^\circ C & 0 & 0 & 0 & 0 \\ \hline T_{J} = 125^\circ C & 0 & 0 & 0 & 0 \\ \hline T_{J} = 10^\circ C & 0 & 0 & $						22		mV/°C
$ \begin{array}{ c c c c c c } \hline T_{i} = 12^{h^{-1}} & T_{i} = 12^{h^{-1}} & 1 & 25^{h^{-1}} & 25^{h^{-1}} \\ \hline Gate -ho-Source Leakage Current & I_{GSS} & V_{DS} = 0 V, V_{GS} = 2 V & 100 & nA \\ \hline ON CHARACTERISTICS (Note 4) & \\ \hline Cate Threshold Voltage & V_{GS}(TH) & V_{GS} = V_{DS}, I_{D} = 40 \ \mu A & 2.5 & 3.5 & V \\ \hline Threshold Temperature Coefficient & V_{GS}(TH) & V_{GS} = 10 V & I_{D} = 35 A & 4.4 & 5.3 & m\Omega \\ \hline Drain-to-Source On Resistance & R_{DS}(m) & V_{GS} = 10 V & I_{D} = 35 A & 5.3 & 5. \\ \hline CharGES, CAPACITANCES & GATE RESISTANCE & & & & & & & & & & & & & & & & & & &$	Zero Gate Voltage Drain Current	I _{DSS}	$V_{} = 40 V_{}$				10	
							250	μΑ
$ \begin{array}{ c c c c c } \hline Gate Threshold Voltage & V_{GS}(TH) & V_{GS} = V_{DS}, I_D = 40 \ \mu A & 2.5 & 3.5 & V \\ \hline Threshold Temperature Coefficient & V_{GS}(TH)/T_J & & -8.0 & mV/C \\ \hline Threshold Temperature Coefficient & V_{GS}(TH)/T_J & & I_D = 35 \ A & 4.4 & 5.3 & m\Omega \\ \hline Threshold Temperature Coefficient & Q_{GS}(TH) & V_{GS} = 10 \ V & I_D = 35 \ A & 4.4 & 5.3 & m\Omega \\ \hline Torain-to-Source On Resistance & Q_{FS} & V_{DS} = 15 \ V, I_D = 35 \ A & 53 & S \\ \hline CHARGES, CAPACITANCES & GATE RESISTANCE & & & & & & & & & & & & & & & & & & &$	Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{G}	_S = 20 V			100	nA
$ \begin{array}{ c c c c c } \hline Threshold Temperature Coefficient & V_{GS(TH)}/T_J & & & & & & & & & & & & & & & & & & &$	ON CHARACTERISTICS (Note 4)							
$ \begin{array}{ c c c c c } \hline \mbox{Drain-to-Source On Resistance} & R_{DS(on)} & V_{GS} = 10 \ V & I_D = 35 \ A & 4.4 & 5.3 & m\Omega \\ \hline \mbox{Forward Transconductance} & g_{FS} & V_{DS} = 15 \ V, \ I_D = 35 \ A & 5.3 & 5. \\ \hline \mbox{CHARGES, CAPACITANCES & GATE RESISTANCE} \\ \hline \mbox{Input Capacitance} & C_{ISS} & V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 25 \ V & 530 & 0 \\ \hline \mbox{Capacitance} & C_{RSS} & V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 25 \ V & 530 & 0 \\ \hline \mbox{Cate Charge} & Q_{G(TO)} & V_{GS} = 10 \ V, \ V_{DS} = 25 \ V, \ I_D = 35 \ A & 5.7 & 0 \\ \hline \mbox{Cate Charge} & Q_{G(TO)} & V_{GS} = 10 \ V, \ V_{DS} = 32 \ V, \ I_D = 35 \ A & 5.7 & 0 \\ \hline \mbox{Cate charge} & Q_{GD} & V_{GP} & V_{GS} = 10 \ V, \ V_{DS} = 32 \ V, \ I_D = 35 \ A & 5.7 \ D & 0 \\ \hline \mbox{Cate charge} & Q_{GD} & V_{GP} & V_{GS} = 10 \ V, \ V_{DS} = 32 \ V, \ I_D = 35 \ A & 5.7 \ D & 0 \\ \hline \mbox{Cate charge} & Q_{GD} & V_{GP} & V_{GS} = 10 \ V, \ V_{DS} = 32 \ V, \ I_D = 35 \ A & 5.7 \ D & 0 \\ \hline \mbox{Cate charge} & V_{GP} & V_{GP} & V_{GS} = 10 \ V, \ V_{DS} = 32 \ V, \ I_D = 35 \ A \ A & 5.3 \ A & 5.7 \ D & 0 \\ \hline \mbox{Cate charge} & V_{GP} & V_{GP} & V_{GS} = 10 \ V, \ V_{DS} = 32 \ V, \ I_D = 35 \ A \ A \ A & 5.3 \ A & 5.7 \ D & 0 \\ \hline \mbox{Cate charge} & V_{GP} & V_{GP} & V_{GS} = 10 \ V, \ V_{DS} = 32 \ V, \ I_D = 35 \ A \ A \ A \ A \ A \ A \ A \ A \ A \ $	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	e = 40 μA	2.5		3.5	V
$ \begin{array}{ c c c c } \hline Forward Transconductance & G_{FS} & V_{DS} = 15 \ V, \ I_{D} = 35 \ A & 53 & S \\ \hline \mbox{CHARGES, CAPACITANCES & GATE RESISTANCE} \\ \hline \mbox{Input Capacitance} & C_{ISS} & & V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 25 \ V & 530 & P \\ \hline \mbox{Capacitance} & C_{RSS} & & V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 25 \ V & 530 & P \\ \hline \mbox{Capacitance} & C_{RSS} & & & & & & & & & & & & \\ \hline \mbox{Catacher Capacitance} & C_{RSS} & & & & & & & & & & & & & & & & \\ \hline \mbox{Catacher Charge} & Q_{G(TO)} & & & & & & & & & & & & & & & & & \\ \hline \mbox{Catacher Charge} & Q_{G(TH)} & & & & & & & & & & & & & & & & & & &$	Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-8.0		mV/°C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 35 A		4.4	5.3	mΩ
$ \begin{array}{ c c c c c c } \hline Input Capacitance & C_{ISS} \\ \hline Output Capacitance & C_{OSS} \\ \hline Output Capacitance & C_{OSS} \\ \hline V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 25 \ V \\ \hline 0 & 0 & 0 \\$	Forward Transconductance	9 _{FS}	V _{DS} =15 V, I _[_D = 35 A		53		S
$ \begin{array}{ c c c c c } \hline Output Capacitance & C_{OSS} \\ \hline Output Capacitance & C_{RSS} \\ \hline Output Capacitance & Q_{G} \\ \hline Output Capacitance & V_{G} \\ \hline O$	CHARGES, CAPACITANCES & GATE RE	SISTANCE			-			
$ \begin{array}{ c c c c c } \hline Reverse Transfer Capacitance & C_{RSS} & & & & & & & & & & & & & & & & & & $	Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V			1000		pF
$ \begin{array}{ c c c c } \hline Total Gate Charge & $Q_{G}(TOT)$ \\ \hline Threshold Gate Charge & $Q_{G}(TH)$ \\ \hline Gate-to-Source Charge & Q_{GB} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} \\ \hline \\ $	Output Capacitance	C _{OSS}				530		
$ \begin{array}{ c c c c c } \hline Threshold Gate Charge & Q_{G(TH)} \\ \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} \\ \hline \\ \hline Plateau Voltage & V_{GP} \\ \hline \\ $	Reverse Transfer Capacitance	C _{RSS}				22		
$ \begin{array}{ c c c c c } \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 32 \ V; \ I_D = 35 \ A \\ \hline & $5.7 \ & 1 \\ \hline & $2.7 \ & 1 \\ \hline & $5.2 \ & V \\ \hline & $5.2 \ & V \\ \hline \\ $	Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 32 V; I _D = 35 A			16		nC
$ \begin{array}{ c c c c c c } \hline Gate-to-Source Charge & Q_{GS} \\ \hline Gate-to-Drain Charge & Q_{GD} \\ \hline Plateau Voltage & V_{GP} \\ \hline & & & & & & & & & & & & & & & & & &$	Threshold Gate Charge	Q _{G(TH)}				3.2		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-to-Source Charge	Q _{GS}				5.7		
$\begin{tabular}{ c c c c c c } \hline Second Se$	Gate-to-Drain Charge	Q _{GD}				2.7		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Plateau Voltage	V _{GP}				5.2		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SWITCHING CHARACTERISTICS (Note 5	5)						•
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(ON)}				11		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time	tr	V_{GS} = 10 V, V_{DS} = 32 V, I_{D} = 35 A, R_{G} = 1 Ω			72		ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(OFF)}				24		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time	t _f				8.0		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DRAIN-SOURCE DIODE CHARACTERIS	TICS				-		•
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Forward Diode Voltage	V _{SD}	V _{GS} = 0 V.	$T_J = 25^{\circ}C$		0.87	1.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			- GS - ,	T _J = 125°C		0.75		- V
Charge Time t _a V _{GS} = 0 V, dls/dt = 100 A/μs, 17 ns Discharge Time t _b I _S = 35 A 18 18 17 18	Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dls/dt = 100 A/µs, I _S = 35 A			36		
Discharge Time t_b $I_S = 35 \text{ A}$ 18	Charge Time	ta				17		ns
Reverse Recovery Charge Q _{RR} 16 nC	Discharge Time					18		
	Reverse Recovery Charge	Q _{RR}				16		nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$.

5. Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

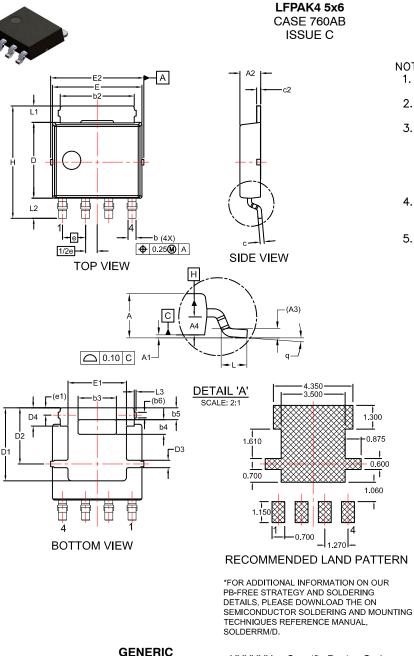
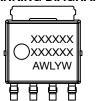


Figure 13. Thermal Characteristics


DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTMYS5D3N04CTWG	5D3N04C	LFPAK4 (Pb–Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MARKING DIAGRAM*

XXXXXX = Specific Device Code А

- = Assembly Location = Wafer Lot WL
 - = Year

Υ

W

= Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	LFPAK4 5x6		PAGE 1 OF 1

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DATE 19 NOV 2019

NOTES:

- DIMENSIONING AND TOLERANCING 1. PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: 2.
- MILLIMETERS. DIMENSIONS D AND E DO NOT 3. INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.150mm PER SIDE.
- DIMENSIONS D AND E ARE 4. DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DATUMS A AND B ARE 5.
 - DETERMINED AT DATUM PLANE H.

U	UNIT IN MILLIMETER				
DIM	DIM MIN NOM MAX				
A	1.10	1.20	1.30		
A1	0.00	0.08	0.15		
A2	1.10	1.15	1.20		
A3	().25 REF	-		
A4	0.45	0.50	0.55		
b	0.40	0.45	0.50		
b2	3.80	4.10	4.40		
b3	2.00	2.10	2.20		
b4	0.70	0.80	0.90		
b5	0.55	0.65	0.75		
b6		0.31 REI	F		
С	0.19	0.22	0.25		
c2	0.19	0.22	0.25		
D	4.05	4.15	4.25		
D1	3.80	4.00	4.20		
D2	3.00	3.10	3.20		
D3	0.30	0.40	0.50		
D4	0.90	1.00	1.10		
Е	4.80	4.90	5.00		
E1	3.10	3.20	3.30		
E2	5.00	5.15	5.30		
е		1.27 BSC			
1/2e		0.635 BSC			
e1	0.40 REF				
н	6.00	6.15	6.30		
L	0.40	0.65	0.85		
L1	0.80	0.90	1.00		
L2	0.90	1.10	1.30		
L3	0.00	0.10	0.20		
q	0°	4°	8°		

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>