onsemi

MOSFET - Power, N-Channel, SUPERFET[®] III, FRFET[®]

650 V, 24 A, 150 m Ω

NTMT150N65S3HF

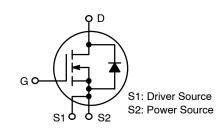
Description

SUPERFET III MOSFET is **onsemi**'s brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate.

Consequently, SUPERFET III MOSFET is very suitable for the various power systems for miniaturization and higher efficiency.

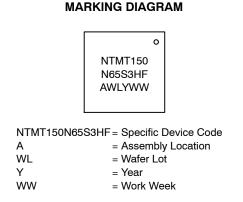
SUPERFET III FRFET MOSFET's optimized reverse recovery performance of body diode can remove additional component and improve system reliability.

The TDFN4 package is an ultra-slim surface-mount package (1 mm high) with a low profile and small footprint (8x8 mm²). SUPERFET III MOSFET in a TDFN4 package offers excellent switching performance due to lower parasitic source inductance and separated power and drive sources. TDFN4 offers Moisture Sensitivity Level 1 (MSL 1).


Features

- 700 V @ T_J = 150°C
- Typ. $R_{DS(on)} = 121 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 43 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 400 pF)
- 100% Avalanche Tested
- These Devices are Pb-Free and are RoHS Compliant

Applications


- Telecom / Server Power Supplies
- Industrial Power Supplies
- UPS / Solar
- Lighting

POWER MOSFET

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

1

Symbol	Parameter Drain to Source Voltage		Value	Unit V	
V _{DSS}			650		
V _{GSS}	Gate to Source Voltage	– DC	±30	V	
		– AC (f > 1 Hz)	±30		
I _D	Drain Current	– Continuous (T _C = 25°C)	24	А	
		– Continuous (T _C = 100°C)	15.2		
I _{DM}	Drain Current	– Pulsed (Note 1)	60	А	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		275	mJ	
I _{AS}	Avalanche Current (Note 2)		3.8	А	
E _{AR}	Repetitive Avalanche Energy (Note 1)		1.92	mJ	
dv/dt	MOSFET dv/dt		100	V/ns	
	Peak Diode Recovery dv/dt (Note 3)		50	1	
P _D	Power Dissipation	(T _C = 25°C)	192	W	
		– Derate Above 25°C	1.54	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
ΤL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 seconds		300	°C	

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, Unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Repetitive rating: pulse-width limited by maximum junction temperature. 2. $I_{AS} = 3.8 \text{ A}$, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}C$. 3. $I_{SD} \le 12 \text{ A}$, di/dt $\le 200 \text{ A}/\mu\text{s}$, $V_{DD} \le 400 \text{ V}$, starting $T_J = 25^{\circ}C$.

THERMAL CHARACTERISTICS

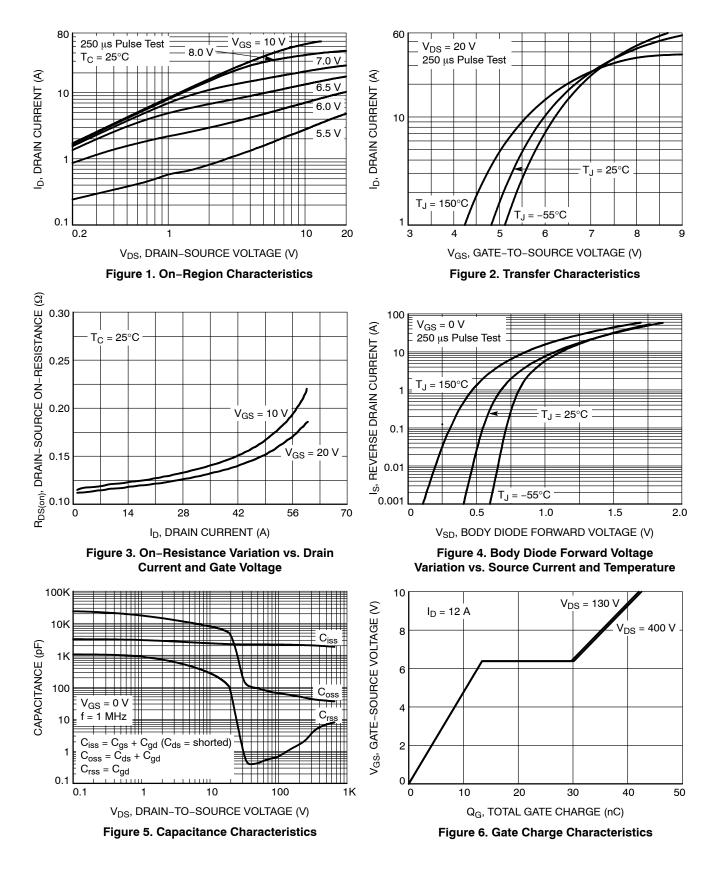
Symbol	Symbol Parameter		Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.65	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient, Max., (Note 4)	45	

4. Device on 1 in² 2-oz copper pad on 1.5 x 1.5 in. board of FR-4 material.

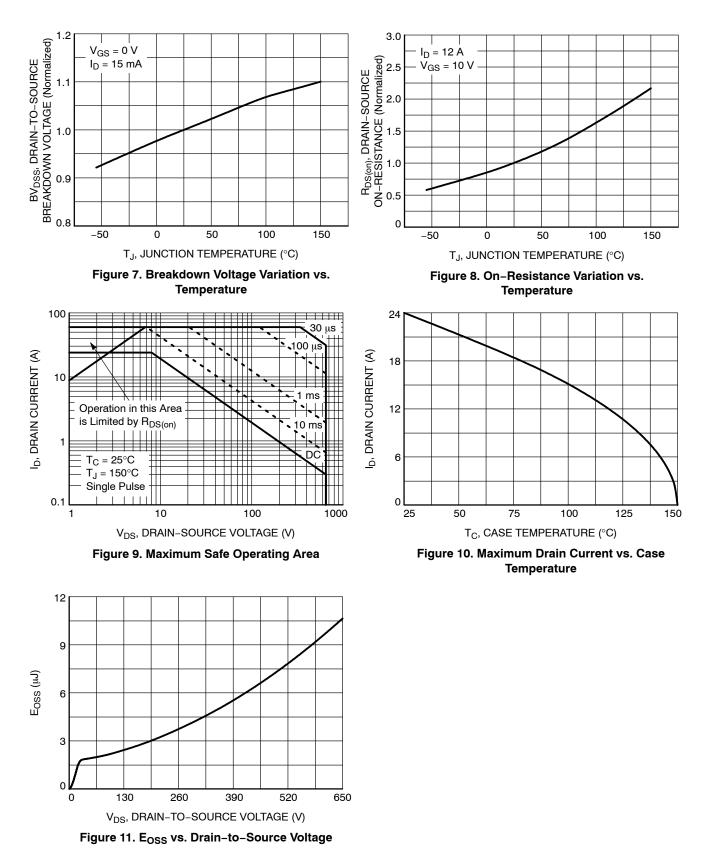
PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Reel Size	Tape Width	Shipping [†]
NTMT150N65S3HF	NTMT150N65S3HF	TDFN4	13″	13.3 mm	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHARACT	ERISTICS	·		•		
BV _{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 1 \text{ mA}, \text{ T}_{J} = 25^{\circ}\text{C}$	650			V
		V_{GS} = 0 V, I _D = 1 mA, T _J = 150°C	700			V
$\Delta \text{BV}_{\text{DSS}}$ / $\Delta \text{T}_{\text{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 10 mA, Referenced to 25°C		0.62		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 650 V, V _{GS} = 0 V			10	μA
		V_{DS} = 520 V, T_{C} = 125°C		10		
I _{GSS}	Gate to Body Leakage Current	$V_{GS}=\pm30~\text{V},~\text{V}_{DS}=0~\text{V}$			±100	nA
ON CHARACTE	RISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 0.54$ mA	3.0		5.0	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 12 A		121	150	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 20 V, I _D = 12 A		14		S
YNAMIC CHA	RACTERISTICS	•				
Ciss	Input Capacitance			1985		pF
Coss	Output Capacitance	V _{DS} = 400 V, V _{GS} = 0 V, f = 1 MHz		40		pF
C _{oss(eff.)}	Effective Output Capacitance	V_{DS} = 0 V to 400 V, V_{GS} = 0 V		400		pF
C _{oss(er.)}	Energy Related Output Capacitance	V_{DS} = 0 V to 400 V, V_{GS} = 0 V		71		pF
Q _{g(tot)}	Total Gate Charge at 10 V			43		nC
Q _{gs}	Gate to Source Gate Charge	V _{DS} = 400 V, I _D = 12 A, V _{GS} = 10 V (Note 5)		13		nC
Q _{gd}	Gate to Drain "Miller" Charge			17		nC
ESR	Equivalent Series Resistance	f = 1 MHz		3.1		Ω
WITCHING CH	ARACTERISTICS	·		•		
t _{d(on)}	Turn-On Delay Time			24		ns
t _r	Turn-On Rise Time	V_{DD} = 400 V, I_D = 12 A, V_{GS} = 10 V R_g = 4.7 Ω (Note 5)		12		ns
t _{d(off)}	Turn-Off Delay Time			60		ns
t _f	Turn-Off Fall Time			3.1		ns
OURCE-DRAII	N DIODE CHARACTERISTICS	•		•	•	•
۱ _S	Maximum Continuous Source to Drain Diode Forward Current				24	Α
I _{SM}	Maximum Pulsed Source to Drain Diode Forward Current				60	А
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 12 A			1.3	V
t _{rr}	Reverse Recovery Time	V _{DD} = 400 V, I _{SD} = 12 A,		80		ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100 \text{ A}/\mu\text{s}$		285		nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Essentially independent of operating temperature typical characteristics.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

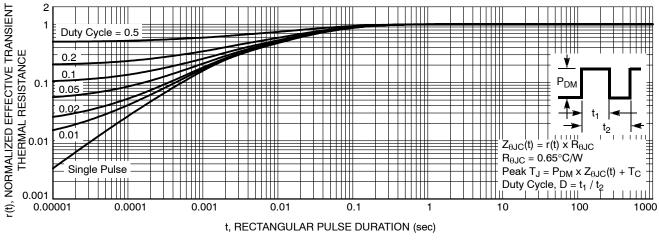


Figure 12. Transient Thermal Response Curve

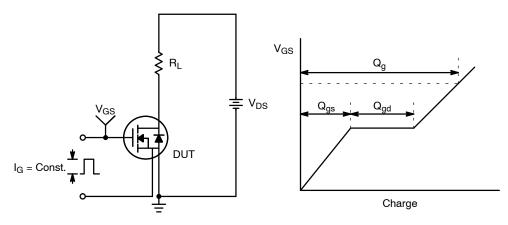



Figure 13. Gate Charge Test Circuit & Waveform

Figure 14. Resistive Switching Test Circuit & Waveforms

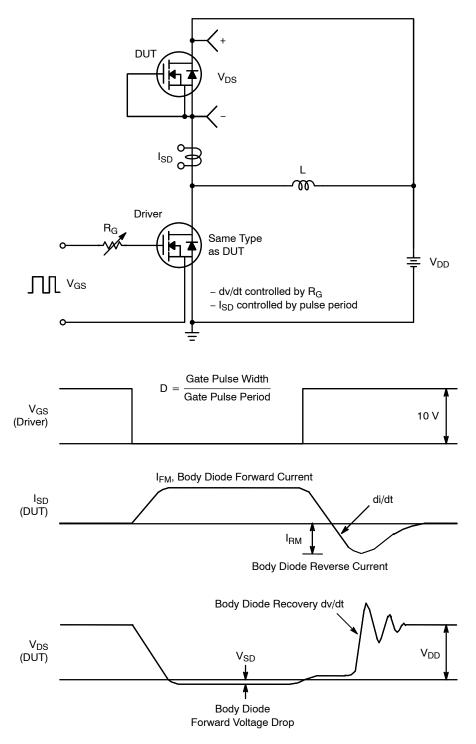
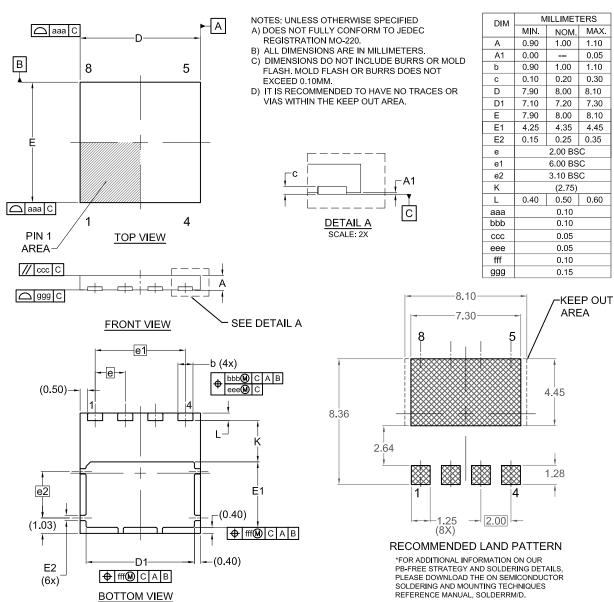



Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

PACKAGE DIMENSIONS

TDFN4 8x8, 2P CASE 520AB

ISSUE O

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC. FRFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters, including "Typicals" must be validated for each customer applications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, co

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative