onsemi

MOSFET - Power, Single N-Channel, DUAL COOL[®], DFN8

80 V, 4.0 mΩ, 136 A

NTMFSC004N08MC

Features

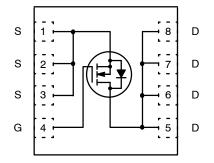
- Advanced Dual-Sided Cooled Packaging
- Ultra Low R_{DS(on)} to Minimize Conduction Losses
- MSL1 Robust Packaging Design
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

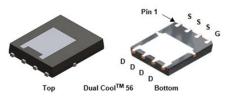
Typical Applications

- Orring FET/Load Switching
- Synchronous Rectifier
- DC–DC Conversion

MAXIMUM RATINGS (T_J = 25°C, Unless otherwise specified)

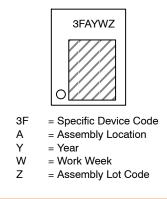
Parameter			Value	Unit
Drain-to-Source Voltage			80	V
Gate-to-Source Voltage			±20	V
Steady $T_{\rm C} = 25^{\circ}{\rm C}$		Ι _D	136	A
Glate		P _D	127	W
Steady	Steady State $T_A = 25^{\circ}C$		80	A
Sidle			3.2	W
$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	487	А
Operating Junction and Storage Temperature Range			–55 to +150	°C
Source Current (Body Diode)			157	А
Single Pulse Drain-to-Source Avalanche Energy (I _{AV} = 55 A, L = 0.1 mH)			178	mJ
Lead Temperature Soldering Reflow for Sol- dering Purposes (1/8" from case for 10 s)		ΤL	300	°C
	ge Je Steady State Steady State T _A = 25° d Storage Te Diode) Source Ava $\circ 0.1$ mH) dering Reflo	ge Je Steady State $T_C = 25^{\circ}C$ Steady State $T_A = 25^{\circ}C, t_p = 10 \ \mu s$ d Storage Temperature Diode) Source Avalanche 0.1 mH definition of the sol-	$\begin{array}{c c} & & & & \\ ge & & & & \\ ye & & \\ Ye & & & \\ Ye & & \\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.

The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

V _{SSS}	R _{SS(ON)} MAX I _D MAX	
80 V	4.0 m Ω @ 10 V	136 A
	8.5 mΩ @ 6 V	130 A


N-Channel MOSFET

DFN8 5x6.15 CASE 506EG

MARKING DIAGRAM

ORDERING INFORMATION

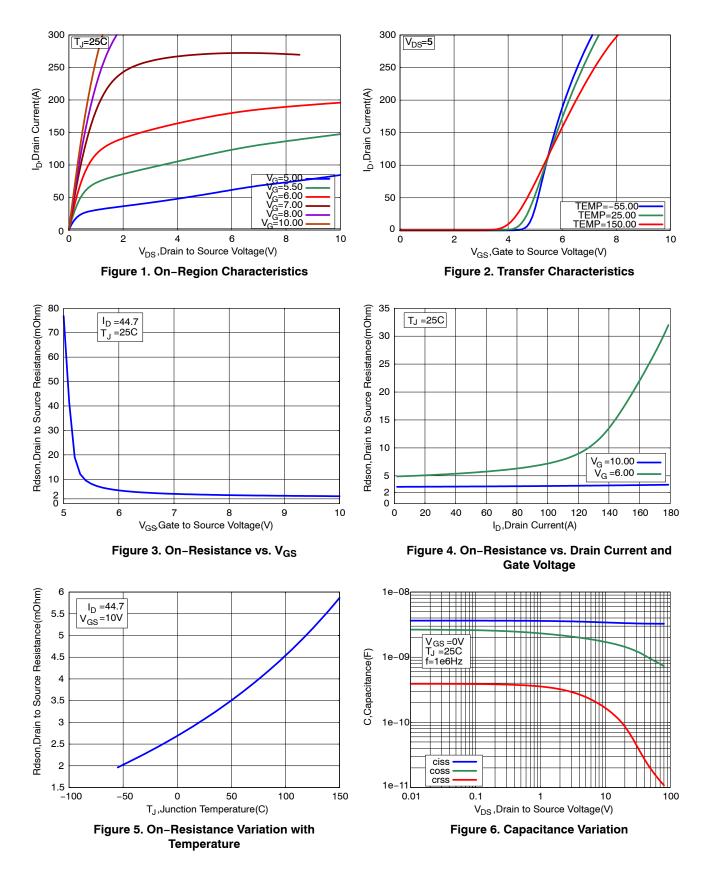
See detailed ordering and shipping information on page 2 of this data sheet.

THERMAL CHARACTERISTICS

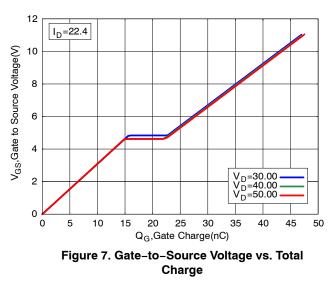
Symbol	Parameter	Мах	Unit
R_{\thetaJC}	Junction-to-Case - Steady State	0.98	°C/W
$R_{\theta JT}$	Junction-to-Case Top - Steady State	1.49	
$R_{ hetaJA}$	Junction-to-Ambient - Steady State (Note 1)	39	

ORDERING INFORMATION

Device	Device Marking	Package	Shipping [†]
NTMFSC004N08MC	4N08MC	DFN8 5x6.15 (Pb–Free/Halogen Free)	3000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		80			V
Drain – to – Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref to 25°C			0.05		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	<u> </u>	$T_J = 25^{\circ}C$			10	μA
		$V_{GS} = 0 V, V_{DS} = 80 V$ $T_{J} = 12$	T _J = 125°C			250	
Gate - to - Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 2$	250 μΑ	2.0	2.9	4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} ^{/ T} J	I _D = 250 μA, ref to 25°C			-6.5		mV/°C
Drain – to – Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 44 A			3.1	4.0	mΩ
		$V_{GS} = 6 V, I_D = 22 A$			5.0	8.5	
Gate-Resistance	R _G	T _A = 25°C			1.3		Ω
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 40 V			2980		pF
Output Capacitance	C _{OSS}				950		1
Reverse Transfer Capacitance	C _{RSS}				50		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 6 \text{ V}, \text{ V}_{DS} = 40 \text{ V}, \text{ I}_{D} = 22 \text{ A}$			27.8		nC
Total Gate Charge	Q _{G(TOT)}				43.4		
Gate-to-Source Charge	Q _{GS}	V_{GS} = 10 V, V_{DS} = 40 V, I_{D} = 22 A			15]
Gate-to-Drain Charge	Q _{GD}				7		
SWITCHING CHARACTERISTICS (Note							
Turn – On Delay Time	^t d(ON)				11.7		ns
Rise Time	tr	V _{GS} = 10 V, V _{DS} =	= 40 V,		21.5		
Turn – Off Delay Time	^t d(OFF)	V_{GS} = 10 V, V_{DS} = 40 V, I_{D} = 44 A, R_{G} = 2.5 Ω			28.7		
Fall Time	t _f				5.4		
DRAIN-SOURCE DIODE CHARACTER	ISTICS				-		
Forward Diode Voltage	V _{SD}		T _J = 25°C		0.83	1.30	V
		V _{GS} = 0 V, I _S = 44 A	T _J = 125°C		0.69		
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dI _S /dt = 100 A/µs, I _S = 44 A			44		ns
Reverse Recovery Charge	Q _{RR}				50		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

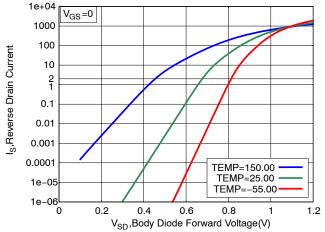


Figure 9. Diode Forward Voltage vs. Current

+ + +

1e-05

1000

100

10

2

1

0.1

1e-06

I_{AS},AVALANCHE CURRENT(A)

Figure 8. Resistive Switching Time Variation vs. Gate Resistance

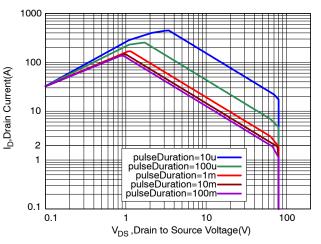
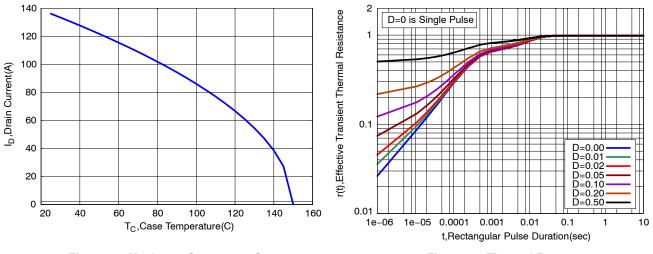


Figure 10. Maximum Rated Forward Biased Safe Operating Area



Figure 12. G_{FS} vs. I_D

temp=25.00 temp=100.00 temp=125.00


0.0001

t_{AV} ,TIME IN AVALANCHE(s)

Figure 11. IPEAK vs. Time in Avalanche

0.001

TYPICAL CHARACTERISTICS

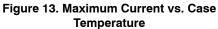
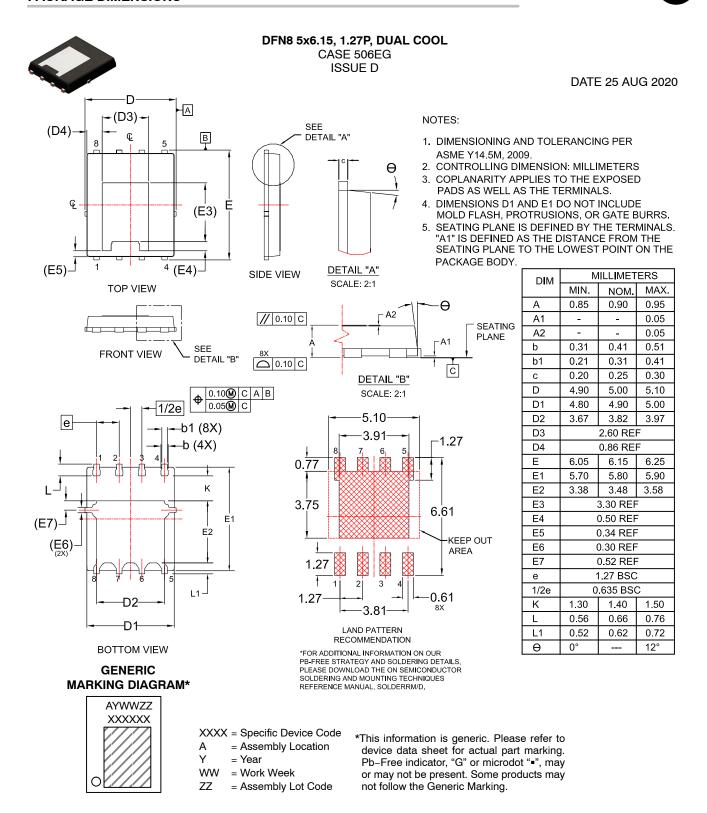



Figure 14. Thermal Response

DUAL COOL is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DOCUMENT NUMBER:	98AON84257G Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DFN8 5x6.15, 1.27P, DUAL COOL		PAGE 1 OF 1	
· · · · · · · · · · · · · · · · · · ·				

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the right to others.

© Semiconductor Components Industries, LLC, 2018

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>